Loading…

Carbon Oxide Hydrogenation over GdBO3 (B = Fe, Mn, Co) Complex Oxides: Effect of Carbon Dioxide on Product Composition

The catalytic properties of GdFeO 3 , GdСоO 3 , and GdMnO 3 perovskite-type complex oxides in carbon oxide hydrogenation are studied. A correlation between the composition and catalytic properties of the oxide is found. It is shown that carbon monoxide conversion increases in the following order: Gd...

Full description

Saved in:
Bibliographic Details
Published in:Petroleum chemistry 2020-05, Vol.60 (5), p.571-576
Main Authors: Sheshko, T. F., Sharaeva, A. A., Powell, O. K., Serov, Yu. M., Chislova, I. V., Yafarova, L. V., Koroleva, A. V., Zvereva, I. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-16199ca9cd3148afbc24318ea18527b95cc580de59dd124eaecbfe4b8c33783c3
cites cdi_FETCH-LOGICAL-c353t-16199ca9cd3148afbc24318ea18527b95cc580de59dd124eaecbfe4b8c33783c3
container_end_page 576
container_issue 5
container_start_page 571
container_title Petroleum chemistry
container_volume 60
creator Sheshko, T. F.
Sharaeva, A. A.
Powell, O. K.
Serov, Yu. M.
Chislova, I. V.
Yafarova, L. V.
Koroleva, A. V.
Zvereva, I. A.
description The catalytic properties of GdFeO 3 , GdСоO 3 , and GdMnO 3 perovskite-type complex oxides in carbon oxide hydrogenation are studied. A correlation between the composition and catalytic properties of the oxide is found. It is shown that carbon monoxide conversion increases in the following order: GdFeO 3 < GdMnO 3 ≤ GdСоO 3 ; carbon dioxide conversion increases in the reverse order. Differences in the catalytic characteristics of GdFeO 3 , GdMnO 3 , and GdCoO 3 are attributed to different forms of chemisorbed CO, CO 2 , and H 2 and the hydrogen mobility across the catalyst surface. The introduction of carbon dioxide into the reaction mixture suppresses the formation of olefins and causes an increase in methane yield. In the catalytic process, GdCoO 3 is partially decomposed into Gd 2 O 3 , Co, and Gd 2 O 2 CO 3 . It is assumed that carbon oxides are adsorbed by Gd 3+ ions (A site), while transition metal ions (B site) are responsible for the formation of atomic hydrogen. It is presumed that carbon sites formed on the surface differ in catalytic activity: some of them are responsible for the formation of unsaturated hydrocarbons, and the others are responsible for the formation of paraffins.
doi_str_mv 10.1134/S0965544120050114
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2405904550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405904550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-16199ca9cd3148afbc24318ea18527b95cc580de59dd124eaecbfe4b8c33783c3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvAi8Kq-ZpkawQPrm5TmExQzyVN0tGxNTPpxvbvTe3Ag3gICXnf5_ngQ-gSyC0AZXfvRPQ5ZwxiQjgBYEeoA5zzqB9TcYw6TRw1-Sk6835BCAyA0Q7aptLltsKzXakNft5rZ-emknUZ_uzWODzRwxnF10P8gMemh1-rHk7tTTir9dLsWs7f41FRGFVjW-CD8Km0P8rwfHNWb0LYMNaXjfscnRRy6c3F4e6iz_HoI32OprPJS_o4jRTltI6gD0IoKZSmwBJZ5CpmFBIjIeHxIBdcKZ4QbbjQGmJmpFF5YVieKEoHCVW0i65a79rZr43xdbawG1eFkVnMCBeEcU5CC9qWctZ7Z4ps7cqVdPsMSNasN_uz3sDELeNDt5ob92v-H_oGaY96CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405904550</pqid></control><display><type>article</type><title>Carbon Oxide Hydrogenation over GdBO3 (B = Fe, Mn, Co) Complex Oxides: Effect of Carbon Dioxide on Product Composition</title><source>Business Source Ultimate</source><source>Springer Nature</source><creator>Sheshko, T. F. ; Sharaeva, A. A. ; Powell, O. K. ; Serov, Yu. M. ; Chislova, I. V. ; Yafarova, L. V. ; Koroleva, A. V. ; Zvereva, I. A.</creator><creatorcontrib>Sheshko, T. F. ; Sharaeva, A. A. ; Powell, O. K. ; Serov, Yu. M. ; Chislova, I. V. ; Yafarova, L. V. ; Koroleva, A. V. ; Zvereva, I. A.</creatorcontrib><description>The catalytic properties of GdFeO 3 , GdСоO 3 , and GdMnO 3 perovskite-type complex oxides in carbon oxide hydrogenation are studied. A correlation between the composition and catalytic properties of the oxide is found. It is shown that carbon monoxide conversion increases in the following order: GdFeO 3 &lt; GdMnO 3 ≤ GdСоO 3 ; carbon dioxide conversion increases in the reverse order. Differences in the catalytic characteristics of GdFeO 3 , GdMnO 3 , and GdCoO 3 are attributed to different forms of chemisorbed CO, CO 2 , and H 2 and the hydrogen mobility across the catalyst surface. The introduction of carbon dioxide into the reaction mixture suppresses the formation of olefins and causes an increase in methane yield. In the catalytic process, GdCoO 3 is partially decomposed into Gd 2 O 3 , Co, and Gd 2 O 2 CO 3 . It is assumed that carbon oxides are adsorbed by Gd 3+ ions (A site), while transition metal ions (B site) are responsible for the formation of atomic hydrogen. It is presumed that carbon sites formed on the surface differ in catalytic activity: some of them are responsible for the formation of unsaturated hydrocarbons, and the others are responsible for the formation of paraffins.</description><identifier>ISSN: 0965-5441</identifier><identifier>EISSN: 1555-6239</identifier><identifier>DOI: 10.1134/S0965544120050114</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Alkenes ; Carbon dioxide ; Carbon monoxide ; Carbon oxides ; Catalytic activity ; Catalytic converters ; Chemistry ; Chemistry and Materials Science ; Composition ; Conversion ; Correlation analysis ; Gadolinium ; Gadolinium oxides ; Hydrogen storage ; Hydrogenation ; Industrial Chemistry/Chemical Engineering ; Manganese ; Paraffins ; Perovskites ; Transition metals</subject><ispartof>Petroleum chemistry, 2020-05, Vol.60 (5), p.571-576</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-16199ca9cd3148afbc24318ea18527b95cc580de59dd124eaecbfe4b8c33783c3</citedby><cites>FETCH-LOGICAL-c353t-16199ca9cd3148afbc24318ea18527b95cc580de59dd124eaecbfe4b8c33783c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sheshko, T. F.</creatorcontrib><creatorcontrib>Sharaeva, A. A.</creatorcontrib><creatorcontrib>Powell, O. K.</creatorcontrib><creatorcontrib>Serov, Yu. M.</creatorcontrib><creatorcontrib>Chislova, I. V.</creatorcontrib><creatorcontrib>Yafarova, L. V.</creatorcontrib><creatorcontrib>Koroleva, A. V.</creatorcontrib><creatorcontrib>Zvereva, I. A.</creatorcontrib><title>Carbon Oxide Hydrogenation over GdBO3 (B = Fe, Mn, Co) Complex Oxides: Effect of Carbon Dioxide on Product Composition</title><title>Petroleum chemistry</title><addtitle>Pet. Chem</addtitle><description>The catalytic properties of GdFeO 3 , GdСоO 3 , and GdMnO 3 perovskite-type complex oxides in carbon oxide hydrogenation are studied. A correlation between the composition and catalytic properties of the oxide is found. It is shown that carbon monoxide conversion increases in the following order: GdFeO 3 &lt; GdMnO 3 ≤ GdСоO 3 ; carbon dioxide conversion increases in the reverse order. Differences in the catalytic characteristics of GdFeO 3 , GdMnO 3 , and GdCoO 3 are attributed to different forms of chemisorbed CO, CO 2 , and H 2 and the hydrogen mobility across the catalyst surface. The introduction of carbon dioxide into the reaction mixture suppresses the formation of olefins and causes an increase in methane yield. In the catalytic process, GdCoO 3 is partially decomposed into Gd 2 O 3 , Co, and Gd 2 O 2 CO 3 . It is assumed that carbon oxides are adsorbed by Gd 3+ ions (A site), while transition metal ions (B site) are responsible for the formation of atomic hydrogen. It is presumed that carbon sites formed on the surface differ in catalytic activity: some of them are responsible for the formation of unsaturated hydrocarbons, and the others are responsible for the formation of paraffins.</description><subject>Alkenes</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Carbon oxides</subject><subject>Catalytic activity</subject><subject>Catalytic converters</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composition</subject><subject>Conversion</subject><subject>Correlation analysis</subject><subject>Gadolinium</subject><subject>Gadolinium oxides</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Manganese</subject><subject>Paraffins</subject><subject>Perovskites</subject><subject>Transition metals</subject><issn>0965-5441</issn><issn>1555-6239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKc_wFvAi8Kq-ZpkawQPrm5TmExQzyVN0tGxNTPpxvbvTe3Ag3gICXnf5_ngQ-gSyC0AZXfvRPQ5ZwxiQjgBYEeoA5zzqB9TcYw6TRw1-Sk6835BCAyA0Q7aptLltsKzXakNft5rZ-emknUZ_uzWODzRwxnF10P8gMemh1-rHk7tTTir9dLsWs7f41FRGFVjW-CD8Km0P8rwfHNWb0LYMNaXjfscnRRy6c3F4e6iz_HoI32OprPJS_o4jRTltI6gD0IoKZSmwBJZ5CpmFBIjIeHxIBdcKZ4QbbjQGmJmpFF5YVieKEoHCVW0i65a79rZr43xdbawG1eFkVnMCBeEcU5CC9qWctZ7Z4ps7cqVdPsMSNasN_uz3sDELeNDt5ob92v-H_oGaY96CQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Sheshko, T. F.</creator><creator>Sharaeva, A. A.</creator><creator>Powell, O. K.</creator><creator>Serov, Yu. M.</creator><creator>Chislova, I. V.</creator><creator>Yafarova, L. V.</creator><creator>Koroleva, A. V.</creator><creator>Zvereva, I. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>Carbon Oxide Hydrogenation over GdBO3 (B = Fe, Mn, Co) Complex Oxides: Effect of Carbon Dioxide on Product Composition</title><author>Sheshko, T. F. ; Sharaeva, A. A. ; Powell, O. K. ; Serov, Yu. M. ; Chislova, I. V. ; Yafarova, L. V. ; Koroleva, A. V. ; Zvereva, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-16199ca9cd3148afbc24318ea18527b95cc580de59dd124eaecbfe4b8c33783c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkenes</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Carbon oxides</topic><topic>Catalytic activity</topic><topic>Catalytic converters</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composition</topic><topic>Conversion</topic><topic>Correlation analysis</topic><topic>Gadolinium</topic><topic>Gadolinium oxides</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Manganese</topic><topic>Paraffins</topic><topic>Perovskites</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheshko, T. F.</creatorcontrib><creatorcontrib>Sharaeva, A. A.</creatorcontrib><creatorcontrib>Powell, O. K.</creatorcontrib><creatorcontrib>Serov, Yu. M.</creatorcontrib><creatorcontrib>Chislova, I. V.</creatorcontrib><creatorcontrib>Yafarova, L. V.</creatorcontrib><creatorcontrib>Koroleva, A. V.</creatorcontrib><creatorcontrib>Zvereva, I. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Petroleum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheshko, T. F.</au><au>Sharaeva, A. A.</au><au>Powell, O. K.</au><au>Serov, Yu. M.</au><au>Chislova, I. V.</au><au>Yafarova, L. V.</au><au>Koroleva, A. V.</au><au>Zvereva, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Oxide Hydrogenation over GdBO3 (B = Fe, Mn, Co) Complex Oxides: Effect of Carbon Dioxide on Product Composition</atitle><jtitle>Petroleum chemistry</jtitle><stitle>Pet. Chem</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>60</volume><issue>5</issue><spage>571</spage><epage>576</epage><pages>571-576</pages><issn>0965-5441</issn><eissn>1555-6239</eissn><abstract>The catalytic properties of GdFeO 3 , GdСоO 3 , and GdMnO 3 perovskite-type complex oxides in carbon oxide hydrogenation are studied. A correlation between the composition and catalytic properties of the oxide is found. It is shown that carbon monoxide conversion increases in the following order: GdFeO 3 &lt; GdMnO 3 ≤ GdСоO 3 ; carbon dioxide conversion increases in the reverse order. Differences in the catalytic characteristics of GdFeO 3 , GdMnO 3 , and GdCoO 3 are attributed to different forms of chemisorbed CO, CO 2 , and H 2 and the hydrogen mobility across the catalyst surface. The introduction of carbon dioxide into the reaction mixture suppresses the formation of olefins and causes an increase in methane yield. In the catalytic process, GdCoO 3 is partially decomposed into Gd 2 O 3 , Co, and Gd 2 O 2 CO 3 . It is assumed that carbon oxides are adsorbed by Gd 3+ ions (A site), while transition metal ions (B site) are responsible for the formation of atomic hydrogen. It is presumed that carbon sites formed on the surface differ in catalytic activity: some of them are responsible for the formation of unsaturated hydrocarbons, and the others are responsible for the formation of paraffins.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965544120050114</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5441
ispartof Petroleum chemistry, 2020-05, Vol.60 (5), p.571-576
issn 0965-5441
1555-6239
language eng
recordid cdi_proquest_journals_2405904550
source Business Source Ultimate; Springer Nature
subjects Alkenes
Carbon dioxide
Carbon monoxide
Carbon oxides
Catalytic activity
Catalytic converters
Chemistry
Chemistry and Materials Science
Composition
Conversion
Correlation analysis
Gadolinium
Gadolinium oxides
Hydrogen storage
Hydrogenation
Industrial Chemistry/Chemical Engineering
Manganese
Paraffins
Perovskites
Transition metals
title Carbon Oxide Hydrogenation over GdBO3 (B = Fe, Mn, Co) Complex Oxides: Effect of Carbon Dioxide on Product Composition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Oxide%20Hydrogenation%20over%20GdBO3%20(B%20=%20Fe,%20Mn,%20Co)%20Complex%20Oxides:%20Effect%20of%20Carbon%20Dioxide%20on%20Product%20Composition&rft.jtitle=Petroleum%20chemistry&rft.au=Sheshko,%20T.%20F.&rft.date=2020-05-01&rft.volume=60&rft.issue=5&rft.spage=571&rft.epage=576&rft.pages=571-576&rft.issn=0965-5441&rft.eissn=1555-6239&rft_id=info:doi/10.1134/S0965544120050114&rft_dat=%3Cproquest_cross%3E2405904550%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-16199ca9cd3148afbc24318ea18527b95cc580de59dd124eaecbfe4b8c33783c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2405904550&rft_id=info:pmid/&rfr_iscdi=true