Loading…
Carbon Oxide Hydrogenation over GdBO3 (B = Fe, Mn, Co) Complex Oxides: Effect of Carbon Dioxide on Product Composition
The catalytic properties of GdFeO 3 , GdСоO 3 , and GdMnO 3 perovskite-type complex oxides in carbon oxide hydrogenation are studied. A correlation between the composition and catalytic properties of the oxide is found. It is shown that carbon monoxide conversion increases in the following order: Gd...
Saved in:
Published in: | Petroleum chemistry 2020-05, Vol.60 (5), p.571-576 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-16199ca9cd3148afbc24318ea18527b95cc580de59dd124eaecbfe4b8c33783c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-16199ca9cd3148afbc24318ea18527b95cc580de59dd124eaecbfe4b8c33783c3 |
container_end_page | 576 |
container_issue | 5 |
container_start_page | 571 |
container_title | Petroleum chemistry |
container_volume | 60 |
creator | Sheshko, T. F. Sharaeva, A. A. Powell, O. K. Serov, Yu. M. Chislova, I. V. Yafarova, L. V. Koroleva, A. V. Zvereva, I. A. |
description | The catalytic properties of GdFeO
3
, GdСоO
3
, and GdMnO
3
perovskite-type complex oxides in carbon oxide hydrogenation are studied. A correlation between the composition and catalytic properties of the oxide is found. It is shown that carbon monoxide conversion increases in the following order: GdFeO
3
< GdMnO
3
≤ GdСоO
3
; carbon dioxide conversion increases in the reverse order. Differences in the catalytic characteristics of GdFeO
3
, GdMnO
3
, and GdCoO
3
are attributed to different forms of chemisorbed CO, CO
2
, and H
2
and the hydrogen mobility across the catalyst surface. The introduction of carbon dioxide into the reaction mixture suppresses the formation of olefins and causes an increase in methane yield. In the catalytic process, GdCoO
3
is partially decomposed into Gd
2
O
3
, Co, and Gd
2
O
2
CO
3
. It is assumed that carbon oxides are adsorbed by Gd
3+
ions (A site), while transition metal ions (B site) are responsible for the formation of atomic hydrogen. It is presumed that carbon sites formed on the surface differ in catalytic activity: some of them are responsible for the formation of unsaturated hydrocarbons, and the others are responsible for the formation of paraffins. |
doi_str_mv | 10.1134/S0965544120050114 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2405904550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405904550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-16199ca9cd3148afbc24318ea18527b95cc580de59dd124eaecbfe4b8c33783c3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvAi8Kq-ZpkawQPrm5TmExQzyVN0tGxNTPpxvbvTe3Ag3gICXnf5_ngQ-gSyC0AZXfvRPQ5ZwxiQjgBYEeoA5zzqB9TcYw6TRw1-Sk6835BCAyA0Q7aptLltsKzXakNft5rZ-emknUZ_uzWODzRwxnF10P8gMemh1-rHk7tTTir9dLsWs7f41FRGFVjW-CD8Km0P8rwfHNWb0LYMNaXjfscnRRy6c3F4e6iz_HoI32OprPJS_o4jRTltI6gD0IoKZSmwBJZ5CpmFBIjIeHxIBdcKZ4QbbjQGmJmpFF5YVieKEoHCVW0i65a79rZr43xdbawG1eFkVnMCBeEcU5CC9qWctZ7Z4ps7cqVdPsMSNasN_uz3sDELeNDt5ob92v-H_oGaY96CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405904550</pqid></control><display><type>article</type><title>Carbon Oxide Hydrogenation over GdBO3 (B = Fe, Mn, Co) Complex Oxides: Effect of Carbon Dioxide on Product Composition</title><source>Business Source Ultimate</source><source>Springer Nature</source><creator>Sheshko, T. F. ; Sharaeva, A. A. ; Powell, O. K. ; Serov, Yu. M. ; Chislova, I. V. ; Yafarova, L. V. ; Koroleva, A. V. ; Zvereva, I. A.</creator><creatorcontrib>Sheshko, T. F. ; Sharaeva, A. A. ; Powell, O. K. ; Serov, Yu. M. ; Chislova, I. V. ; Yafarova, L. V. ; Koroleva, A. V. ; Zvereva, I. A.</creatorcontrib><description>The catalytic properties of GdFeO
3
, GdСоO
3
, and GdMnO
3
perovskite-type complex oxides in carbon oxide hydrogenation are studied. A correlation between the composition and catalytic properties of the oxide is found. It is shown that carbon monoxide conversion increases in the following order: GdFeO
3
< GdMnO
3
≤ GdСоO
3
; carbon dioxide conversion increases in the reverse order. Differences in the catalytic characteristics of GdFeO
3
, GdMnO
3
, and GdCoO
3
are attributed to different forms of chemisorbed CO, CO
2
, and H
2
and the hydrogen mobility across the catalyst surface. The introduction of carbon dioxide into the reaction mixture suppresses the formation of olefins and causes an increase in methane yield. In the catalytic process, GdCoO
3
is partially decomposed into Gd
2
O
3
, Co, and Gd
2
O
2
CO
3
. It is assumed that carbon oxides are adsorbed by Gd
3+
ions (A site), while transition metal ions (B site) are responsible for the formation of atomic hydrogen. It is presumed that carbon sites formed on the surface differ in catalytic activity: some of them are responsible for the formation of unsaturated hydrocarbons, and the others are responsible for the formation of paraffins.</description><identifier>ISSN: 0965-5441</identifier><identifier>EISSN: 1555-6239</identifier><identifier>DOI: 10.1134/S0965544120050114</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Alkenes ; Carbon dioxide ; Carbon monoxide ; Carbon oxides ; Catalytic activity ; Catalytic converters ; Chemistry ; Chemistry and Materials Science ; Composition ; Conversion ; Correlation analysis ; Gadolinium ; Gadolinium oxides ; Hydrogen storage ; Hydrogenation ; Industrial Chemistry/Chemical Engineering ; Manganese ; Paraffins ; Perovskites ; Transition metals</subject><ispartof>Petroleum chemistry, 2020-05, Vol.60 (5), p.571-576</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-16199ca9cd3148afbc24318ea18527b95cc580de59dd124eaecbfe4b8c33783c3</citedby><cites>FETCH-LOGICAL-c353t-16199ca9cd3148afbc24318ea18527b95cc580de59dd124eaecbfe4b8c33783c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sheshko, T. F.</creatorcontrib><creatorcontrib>Sharaeva, A. A.</creatorcontrib><creatorcontrib>Powell, O. K.</creatorcontrib><creatorcontrib>Serov, Yu. M.</creatorcontrib><creatorcontrib>Chislova, I. V.</creatorcontrib><creatorcontrib>Yafarova, L. V.</creatorcontrib><creatorcontrib>Koroleva, A. V.</creatorcontrib><creatorcontrib>Zvereva, I. A.</creatorcontrib><title>Carbon Oxide Hydrogenation over GdBO3 (B = Fe, Mn, Co) Complex Oxides: Effect of Carbon Dioxide on Product Composition</title><title>Petroleum chemistry</title><addtitle>Pet. Chem</addtitle><description>The catalytic properties of GdFeO
3
, GdСоO
3
, and GdMnO
3
perovskite-type complex oxides in carbon oxide hydrogenation are studied. A correlation between the composition and catalytic properties of the oxide is found. It is shown that carbon monoxide conversion increases in the following order: GdFeO
3
< GdMnO
3
≤ GdСоO
3
; carbon dioxide conversion increases in the reverse order. Differences in the catalytic characteristics of GdFeO
3
, GdMnO
3
, and GdCoO
3
are attributed to different forms of chemisorbed CO, CO
2
, and H
2
and the hydrogen mobility across the catalyst surface. The introduction of carbon dioxide into the reaction mixture suppresses the formation of olefins and causes an increase in methane yield. In the catalytic process, GdCoO
3
is partially decomposed into Gd
2
O
3
, Co, and Gd
2
O
2
CO
3
. It is assumed that carbon oxides are adsorbed by Gd
3+
ions (A site), while transition metal ions (B site) are responsible for the formation of atomic hydrogen. It is presumed that carbon sites formed on the surface differ in catalytic activity: some of them are responsible for the formation of unsaturated hydrocarbons, and the others are responsible for the formation of paraffins.</description><subject>Alkenes</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Carbon oxides</subject><subject>Catalytic activity</subject><subject>Catalytic converters</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composition</subject><subject>Conversion</subject><subject>Correlation analysis</subject><subject>Gadolinium</subject><subject>Gadolinium oxides</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Manganese</subject><subject>Paraffins</subject><subject>Perovskites</subject><subject>Transition metals</subject><issn>0965-5441</issn><issn>1555-6239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKc_wFvAi8Kq-ZpkawQPrm5TmExQzyVN0tGxNTPpxvbvTe3Ag3gICXnf5_ngQ-gSyC0AZXfvRPQ5ZwxiQjgBYEeoA5zzqB9TcYw6TRw1-Sk6835BCAyA0Q7aptLltsKzXakNft5rZ-emknUZ_uzWODzRwxnF10P8gMemh1-rHk7tTTir9dLsWs7f41FRGFVjW-CD8Km0P8rwfHNWb0LYMNaXjfscnRRy6c3F4e6iz_HoI32OprPJS_o4jRTltI6gD0IoKZSmwBJZ5CpmFBIjIeHxIBdcKZ4QbbjQGmJmpFF5YVieKEoHCVW0i65a79rZr43xdbawG1eFkVnMCBeEcU5CC9qWctZ7Z4ps7cqVdPsMSNasN_uz3sDELeNDt5ob92v-H_oGaY96CQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Sheshko, T. F.</creator><creator>Sharaeva, A. A.</creator><creator>Powell, O. K.</creator><creator>Serov, Yu. M.</creator><creator>Chislova, I. V.</creator><creator>Yafarova, L. V.</creator><creator>Koroleva, A. V.</creator><creator>Zvereva, I. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>Carbon Oxide Hydrogenation over GdBO3 (B = Fe, Mn, Co) Complex Oxides: Effect of Carbon Dioxide on Product Composition</title><author>Sheshko, T. F. ; Sharaeva, A. A. ; Powell, O. K. ; Serov, Yu. M. ; Chislova, I. V. ; Yafarova, L. V. ; Koroleva, A. V. ; Zvereva, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-16199ca9cd3148afbc24318ea18527b95cc580de59dd124eaecbfe4b8c33783c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkenes</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Carbon oxides</topic><topic>Catalytic activity</topic><topic>Catalytic converters</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composition</topic><topic>Conversion</topic><topic>Correlation analysis</topic><topic>Gadolinium</topic><topic>Gadolinium oxides</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Manganese</topic><topic>Paraffins</topic><topic>Perovskites</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheshko, T. F.</creatorcontrib><creatorcontrib>Sharaeva, A. A.</creatorcontrib><creatorcontrib>Powell, O. K.</creatorcontrib><creatorcontrib>Serov, Yu. M.</creatorcontrib><creatorcontrib>Chislova, I. V.</creatorcontrib><creatorcontrib>Yafarova, L. V.</creatorcontrib><creatorcontrib>Koroleva, A. V.</creatorcontrib><creatorcontrib>Zvereva, I. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Petroleum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheshko, T. F.</au><au>Sharaeva, A. A.</au><au>Powell, O. K.</au><au>Serov, Yu. M.</au><au>Chislova, I. V.</au><au>Yafarova, L. V.</au><au>Koroleva, A. V.</au><au>Zvereva, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Oxide Hydrogenation over GdBO3 (B = Fe, Mn, Co) Complex Oxides: Effect of Carbon Dioxide on Product Composition</atitle><jtitle>Petroleum chemistry</jtitle><stitle>Pet. Chem</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>60</volume><issue>5</issue><spage>571</spage><epage>576</epage><pages>571-576</pages><issn>0965-5441</issn><eissn>1555-6239</eissn><abstract>The catalytic properties of GdFeO
3
, GdСоO
3
, and GdMnO
3
perovskite-type complex oxides in carbon oxide hydrogenation are studied. A correlation between the composition and catalytic properties of the oxide is found. It is shown that carbon monoxide conversion increases in the following order: GdFeO
3
< GdMnO
3
≤ GdСоO
3
; carbon dioxide conversion increases in the reverse order. Differences in the catalytic characteristics of GdFeO
3
, GdMnO
3
, and GdCoO
3
are attributed to different forms of chemisorbed CO, CO
2
, and H
2
and the hydrogen mobility across the catalyst surface. The introduction of carbon dioxide into the reaction mixture suppresses the formation of olefins and causes an increase in methane yield. In the catalytic process, GdCoO
3
is partially decomposed into Gd
2
O
3
, Co, and Gd
2
O
2
CO
3
. It is assumed that carbon oxides are adsorbed by Gd
3+
ions (A site), while transition metal ions (B site) are responsible for the formation of atomic hydrogen. It is presumed that carbon sites formed on the surface differ in catalytic activity: some of them are responsible for the formation of unsaturated hydrocarbons, and the others are responsible for the formation of paraffins.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965544120050114</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5441 |
ispartof | Petroleum chemistry, 2020-05, Vol.60 (5), p.571-576 |
issn | 0965-5441 1555-6239 |
language | eng |
recordid | cdi_proquest_journals_2405904550 |
source | Business Source Ultimate; Springer Nature |
subjects | Alkenes Carbon dioxide Carbon monoxide Carbon oxides Catalytic activity Catalytic converters Chemistry Chemistry and Materials Science Composition Conversion Correlation analysis Gadolinium Gadolinium oxides Hydrogen storage Hydrogenation Industrial Chemistry/Chemical Engineering Manganese Paraffins Perovskites Transition metals |
title | Carbon Oxide Hydrogenation over GdBO3 (B = Fe, Mn, Co) Complex Oxides: Effect of Carbon Dioxide on Product Composition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Oxide%20Hydrogenation%20over%20GdBO3%20(B%20=%20Fe,%20Mn,%20Co)%20Complex%20Oxides:%20Effect%20of%20Carbon%20Dioxide%20on%20Product%20Composition&rft.jtitle=Petroleum%20chemistry&rft.au=Sheshko,%20T.%20F.&rft.date=2020-05-01&rft.volume=60&rft.issue=5&rft.spage=571&rft.epage=576&rft.pages=571-576&rft.issn=0965-5441&rft.eissn=1555-6239&rft_id=info:doi/10.1134/S0965544120050114&rft_dat=%3Cproquest_cross%3E2405904550%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-16199ca9cd3148afbc24318ea18527b95cc580de59dd124eaecbfe4b8c33783c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2405904550&rft_id=info:pmid/&rfr_iscdi=true |