Loading…
Powder-mixed electro-discharge machining performance of Inconel 718: effect of concentration of multi-walled carbon nanotube added to the dielectric media
The present work reports an experimental investigation on Powder-Mixed Electro-Discharge Machining (PMEDM) of Inconel 718 superalloy using Multi-Walled Carbon Nanotubes (MWCNTs) dispersed in kerosene, as dielectric media. Effects of variation of peak discharge current along with concentration of car...
Saved in:
Published in: | Sadhana (Bangalore) 2020-12, Vol.45 (1), Article 135 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present work reports an experimental investigation on Powder-Mixed Electro-Discharge Machining (PMEDM) of Inconel 718 superalloy using Multi-Walled Carbon Nanotubes (MWCNTs) dispersed in kerosene, as dielectric media. Effects of variation of peak discharge current along with concentration of carbon nanotubes in the dielectric fluid are studied in purview of machining performance indicators including material removal efficiency, tool wear rate, and surface integrity of the machined part. The obtained results are compared to that of conventional EDM which utilizes kerosene as dielectric media. Morphology and topography, these two aspects of machined surface integrity are deliberated. The following surface morphological features: uneven fusion structure, globules of debris, molten metal deposition, surface cracks, pockmarks, and recast layer are identified. Topographical study includes surface roughness, severity of surface cracking, recast layer thickness, transfer of foreign elements, surface metallurgical characteristics, residual stress, and micro-indentation hardness. It is observed that application of MWCNT mixed dielectric media substantially improves EDM performance of Inconel 718 over conventional EDM. This is due to excellent thermo-physical properties of carbon nanotubes. |
---|---|
ISSN: | 0256-2499 0973-7677 |
DOI: | 10.1007/s12046-020-01378-2 |