Loading…

Sensitivity analysis of near-source ground motions to pseudo-dynamic source models derived with 1-point and 2-point statistics of earthquake source parameters

Ground motion prediction is an important element in seismic hazard analysis. However, the availability of recorded strong ground motion data is limited, particularly for large events in near-source regions. Recently, several physics-based ground motion simulation approaches have been developed, whic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of seismology 2020-04, Vol.24 (2), p.397-422
Main Authors: Park, Donghee, Song, Seok Goo, Rhie, Junkee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ground motion prediction is an important element in seismic hazard analysis. However, the availability of recorded strong ground motion data is limited, particularly for large events in near-source regions. Recently, several physics-based ground motion simulation approaches have been developed, which may be useful for understanding the effect of earthquake source on near-source ground motion characteristics. In this study, we investigated the sensitivity of near-source ground motions to finite earthquake source processes with pseudo-dynamic source models, based on 1-point and 2-point statistics of earthquake source parameters. We simulated ground motions for M w 6.6 and 7.0 vertical strike-slip events using pseudo-dynamic source models derived from multiple sets of input source statistics and investigated the characteristics of near-source ground motions relative to the input source statistics, focusing on the relative station locations with respect to finite-fault geometry. Our results show that the effect of earthquake source on near-source ground motions can vary depending on the locations of near-source stations. The variability of ground motion intensities derived from multiple sets of input source statistics was greater in the forward directivity region. This pattern is also consistent for pseudo-spectral accelerations with various periods. The pseudo-dynamic source modeling method with 1-point and 2-point statistics seems to be an efficient framework for understanding the effect of earthquake source on near-source ground motion characteristics.
ISSN:1383-4649
1573-157X
DOI:10.1007/s10950-020-09905-8