Loading…

SiCxNy-based resistive and threshold switching by using single precursor plasma-enhanced atomic layer deposition

In this work, SiCxNy-based resistive switching memory by using a single precursor for the back end of line (BEOL) integration has been investigated. SiCxNy films were deposited on the aluminum (Al) substrates using plasma enhanced atomic layer deposition (PEALD) method. The effects of SiCxNy chemica...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2020-05, Vol.116 (21)
Main Authors: Hsu, Yu-Lin, Chang, Yao-Feng, Chung, Wei-Min, Chen, Ying-Chen, Lin, Chao-Cheng, Leu, Jihperng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, SiCxNy-based resistive switching memory by using a single precursor for the back end of line (BEOL) integration has been investigated. SiCxNy films were deposited on the aluminum (Al) substrates using plasma enhanced atomic layer deposition (PEALD) method. The effects of SiCxNy chemical structure with respect to resistive switching characteristics have been studied, and the results suggest that the resistive switching mechanism is dominated by the interfacial Schottky junction with SiCxNy composition. This work not only demonstrates a PEALD method in fabricating SiCxNy-based electronics active devices but also provides additional insights into the interaction between the electrical and chemical structures in bi-functional resistive switching or threshold switching behavior. A demonstrated PEALD tool with simple single-precursor for SiCxNy deposition shows excellent feasibility to be used as functional memory and selector devices, further giving the potential pathway for advanced BEOL process integration.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0011192