Loading…
Jointly Encoding Word Confusion Network and Dialogue Context with BERT for Spoken Language Understanding
Spoken Language Understanding (SLU) converts hypotheses from automatic speech recognizer (ASR) into structured semantic representations. ASR recognition errors can severely degenerate the performance of the subsequent SLU module. To address this issue, word confusion networks (WCNs) have been used t...
Saved in:
Published in: | arXiv.org 2020-09 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Liu, Chen Zhu, Su Zhao, Zijian Cao, Ruisheng Chen, Lu Yu, Kai |
description | Spoken Language Understanding (SLU) converts hypotheses from automatic speech recognizer (ASR) into structured semantic representations. ASR recognition errors can severely degenerate the performance of the subsequent SLU module. To address this issue, word confusion networks (WCNs) have been used to encode the input for SLU, which contain richer information than 1-best or n-best hypotheses list. To further eliminate ambiguity, the last system act of dialogue context is also utilized as additional input. In this paper, a novel BERT based SLU model (WCN-BERT SLU) is proposed to encode WCNs and the dialogue context jointly. It can integrate both structural information and ASR posterior probabilities of WCNs in the BERT architecture. Experiments on DSTC2, a benchmark of SLU, show that the proposed method is effective and can outperform previous state-of-the-art models significantly. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2406738495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406738495</sourcerecordid><originalsourceid>FETCH-proquest_journals_24067384953</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRYMgWNR_GHBdqEnrY6tWRMSFVlxKsGlNLTM1D9S_t4If4Ooszrm3wwIuxDicxZz32NDaKooiPpnyJBEBu21Jo6vfkOKVco0lnMnksCQsvNWEsFfuSeYOEnNYaVlT6dVXO_Vy8NTuBov0kEFBBo4N3RXCTmLpZanghLky1rXL9nfAuoWsrRr-2GejdZotN2Fj6OGVdZeKvMFWXXgcTaZiFs8T8V_1ASauR5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406738495</pqid></control><display><type>article</type><title>Jointly Encoding Word Confusion Network and Dialogue Context with BERT for Spoken Language Understanding</title><source>Publicly Available Content Database</source><creator>Liu, Chen ; Zhu, Su ; Zhao, Zijian ; Cao, Ruisheng ; Chen, Lu ; Yu, Kai</creator><creatorcontrib>Liu, Chen ; Zhu, Su ; Zhao, Zijian ; Cao, Ruisheng ; Chen, Lu ; Yu, Kai</creatorcontrib><description>Spoken Language Understanding (SLU) converts hypotheses from automatic speech recognizer (ASR) into structured semantic representations. ASR recognition errors can severely degenerate the performance of the subsequent SLU module. To address this issue, word confusion networks (WCNs) have been used to encode the input for SLU, which contain richer information than 1-best or n-best hypotheses list. To further eliminate ambiguity, the last system act of dialogue context is also utilized as additional input. In this paper, a novel BERT based SLU model (WCN-BERT SLU) is proposed to encode WCNs and the dialogue context jointly. It can integrate both structural information and ASR posterior probabilities of WCNs in the BERT architecture. Experiments on DSTC2, a benchmark of SLU, show that the proposed method is effective and can outperform previous state-of-the-art models significantly.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Confusion ; Context ; Hypotheses ; Speech recognition ; Words (language)</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2406738495?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Zhu, Su</creatorcontrib><creatorcontrib>Zhao, Zijian</creatorcontrib><creatorcontrib>Cao, Ruisheng</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Yu, Kai</creatorcontrib><title>Jointly Encoding Word Confusion Network and Dialogue Context with BERT for Spoken Language Understanding</title><title>arXiv.org</title><description>Spoken Language Understanding (SLU) converts hypotheses from automatic speech recognizer (ASR) into structured semantic representations. ASR recognition errors can severely degenerate the performance of the subsequent SLU module. To address this issue, word confusion networks (WCNs) have been used to encode the input for SLU, which contain richer information than 1-best or n-best hypotheses list. To further eliminate ambiguity, the last system act of dialogue context is also utilized as additional input. In this paper, a novel BERT based SLU model (WCN-BERT SLU) is proposed to encode WCNs and the dialogue context jointly. It can integrate both structural information and ASR posterior probabilities of WCNs in the BERT architecture. Experiments on DSTC2, a benchmark of SLU, show that the proposed method is effective and can outperform previous state-of-the-art models significantly.</description><subject>Confusion</subject><subject>Context</subject><subject>Hypotheses</subject><subject>Speech recognition</subject><subject>Words (language)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMsKwjAQRYMgWNR_GHBdqEnrY6tWRMSFVlxKsGlNLTM1D9S_t4If4Ooszrm3wwIuxDicxZz32NDaKooiPpnyJBEBu21Jo6vfkOKVco0lnMnksCQsvNWEsFfuSeYOEnNYaVlT6dVXO_Vy8NTuBov0kEFBBo4N3RXCTmLpZanghLky1rXL9nfAuoWsrRr-2GejdZotN2Fj6OGVdZeKvMFWXXgcTaZiFs8T8V_1ASauR5M</recordid><startdate>20200908</startdate><enddate>20200908</enddate><creator>Liu, Chen</creator><creator>Zhu, Su</creator><creator>Zhao, Zijian</creator><creator>Cao, Ruisheng</creator><creator>Chen, Lu</creator><creator>Yu, Kai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200908</creationdate><title>Jointly Encoding Word Confusion Network and Dialogue Context with BERT for Spoken Language Understanding</title><author>Liu, Chen ; Zhu, Su ; Zhao, Zijian ; Cao, Ruisheng ; Chen, Lu ; Yu, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24067384953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Confusion</topic><topic>Context</topic><topic>Hypotheses</topic><topic>Speech recognition</topic><topic>Words (language)</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Zhu, Su</creatorcontrib><creatorcontrib>Zhao, Zijian</creatorcontrib><creatorcontrib>Cao, Ruisheng</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Yu, Kai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chen</au><au>Zhu, Su</au><au>Zhao, Zijian</au><au>Cao, Ruisheng</au><au>Chen, Lu</au><au>Yu, Kai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Jointly Encoding Word Confusion Network and Dialogue Context with BERT for Spoken Language Understanding</atitle><jtitle>arXiv.org</jtitle><date>2020-09-08</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Spoken Language Understanding (SLU) converts hypotheses from automatic speech recognizer (ASR) into structured semantic representations. ASR recognition errors can severely degenerate the performance of the subsequent SLU module. To address this issue, word confusion networks (WCNs) have been used to encode the input for SLU, which contain richer information than 1-best or n-best hypotheses list. To further eliminate ambiguity, the last system act of dialogue context is also utilized as additional input. In this paper, a novel BERT based SLU model (WCN-BERT SLU) is proposed to encode WCNs and the dialogue context jointly. It can integrate both structural information and ASR posterior probabilities of WCNs in the BERT architecture. Experiments on DSTC2, a benchmark of SLU, show that the proposed method is effective and can outperform previous state-of-the-art models significantly.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2406738495 |
source | Publicly Available Content Database |
subjects | Confusion Context Hypotheses Speech recognition Words (language) |
title | Jointly Encoding Word Confusion Network and Dialogue Context with BERT for Spoken Language Understanding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Jointly%20Encoding%20Word%20Confusion%20Network%20and%20Dialogue%20Context%20with%20BERT%20for%20Spoken%20Language%20Understanding&rft.jtitle=arXiv.org&rft.au=Liu,%20Chen&rft.date=2020-09-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2406738495%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24067384953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2406738495&rft_id=info:pmid/&rfr_iscdi=true |