Loading…

Kinetic and Thermodynamic Analysis of Guaiacol Hydrodeoxygenation

Kinetics of guaiacol hydrodeoxygenation (HDO) was studied using supported Mo x C–SBA-15 and as a comparison 5 wt% Pt/C under 30 bar hydrogen at 200 °C and 300 °C. Catalyst characterization was done by a range of physical methods including also determination of the amount of coke and the nature of ad...

Full description

Saved in:
Bibliographic Details
Published in:Catalysis letters 2019-09, Vol.149 (9), p.2453-2467
Main Authors: Sulman, Alexandrina, Mäki-Arvela, Päivi, Bomont, Louis, Alda-Onggar, Moldir, Fedorov, Vyacheslav, Russo, Vincenzo, Eränen, Kari, Peurla, Markus, Akhmetzyanova, Uliana, Skuhrovcová, Lenka, Tišler, Zdeněk, Grénman, Henrik, Wärnå, Johan, Murzin, Dmitry Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-9a84bd15047e041932722008d74db0bd92ed361d5cb159359db8ac8fff01711c3
cites cdi_FETCH-LOGICAL-c436t-9a84bd15047e041932722008d74db0bd92ed361d5cb159359db8ac8fff01711c3
container_end_page 2467
container_issue 9
container_start_page 2453
container_title Catalysis letters
container_volume 149
creator Sulman, Alexandrina
Mäki-Arvela, Päivi
Bomont, Louis
Alda-Onggar, Moldir
Fedorov, Vyacheslav
Russo, Vincenzo
Eränen, Kari
Peurla, Markus
Akhmetzyanova, Uliana
Skuhrovcová, Lenka
Tišler, Zdeněk
Grénman, Henrik
Wärnå, Johan
Murzin, Dmitry Yu
description Kinetics of guaiacol hydrodeoxygenation (HDO) was studied using supported Mo x C–SBA-15 and as a comparison 5 wt% Pt/C under 30 bar hydrogen at 200 °C and 300 °C. Catalyst characterization was done by a range of physical methods including also determination of the amount of coke and the nature of adsorbed species. Pt/C gave 2-methoxycyclohexanol as the main product, whereas Mo 2 C–SBA-15 promoted direct deoxygenation exhibiting also strong adsorption of guaiacol on the catalyst surface and formation of oligomers. Thermodynamics of guaiacol HDO was elucidated and the reaction network was proposed based on which kinetic modelling was done. Graphic Abstract
doi_str_mv 10.1007/s10562-019-02856-x
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2406794009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592261868</galeid><sourcerecordid>A592261868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-9a84bd15047e041932722008d74db0bd92ed361d5cb159359db8ac8fff01711c3</originalsourceid><addsrcrecordid>eNp9kd9LwzAQx4soOKf_gE8Fn3zovEt_pHkcQ7fhQNAJewtpk9aOLZlJB-1_b7SC7EXycOH4fI47vkFwizBBAPrgENKMRIAsApKnWdSdBSNMKYlyyjbn_g-IUUzJ5jK4cm4LAIwiGwXT50artilDoWW4_lB2b2Svxd53plrsete40FTh_CgaUZpduOilNVKZrq-VFm1j9HVwUYmdUze_dRy8Pz2uZ4to9TJfzqarqEzirI2YyJNCYgoJVZAgiwklBCCXNJEFFJIRJeMMZVoWmLI4ZbLIRZlXVQVIEct4HNwNcw_WfB6Va_nWHK3f0XGSQEZZ4m_y1GSgarFTvNGVaa0o_ZPK32S0qhrfn6aMkAzzLPfC_YngmVZ1bS2OzvHl2-spSwa2tMY5qyp-sM1e2J4j8O8c-JAD9znwnxx456V4kJyHda3s397_WF_M34oC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406794009</pqid></control><display><type>article</type><title>Kinetic and Thermodynamic Analysis of Guaiacol Hydrodeoxygenation</title><source>Springer Nature</source><creator>Sulman, Alexandrina ; Mäki-Arvela, Päivi ; Bomont, Louis ; Alda-Onggar, Moldir ; Fedorov, Vyacheslav ; Russo, Vincenzo ; Eränen, Kari ; Peurla, Markus ; Akhmetzyanova, Uliana ; Skuhrovcová, Lenka ; Tišler, Zdeněk ; Grénman, Henrik ; Wärnå, Johan ; Murzin, Dmitry Yu</creator><creatorcontrib>Sulman, Alexandrina ; Mäki-Arvela, Päivi ; Bomont, Louis ; Alda-Onggar, Moldir ; Fedorov, Vyacheslav ; Russo, Vincenzo ; Eränen, Kari ; Peurla, Markus ; Akhmetzyanova, Uliana ; Skuhrovcová, Lenka ; Tišler, Zdeněk ; Grénman, Henrik ; Wärnå, Johan ; Murzin, Dmitry Yu</creatorcontrib><description>Kinetics of guaiacol hydrodeoxygenation (HDO) was studied using supported Mo x C–SBA-15 and as a comparison 5 wt% Pt/C under 30 bar hydrogen at 200 °C and 300 °C. Catalyst characterization was done by a range of physical methods including also determination of the amount of coke and the nature of adsorbed species. Pt/C gave 2-methoxycyclohexanol as the main product, whereas Mo 2 C–SBA-15 promoted direct deoxygenation exhibiting also strong adsorption of guaiacol on the catalyst surface and formation of oligomers. Thermodynamics of guaiacol HDO was elucidated and the reaction network was proposed based on which kinetic modelling was done. Graphic Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-019-02856-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Catalysis ; Catalysts ; Chemistry ; Chemistry and Materials Science ; Deoxygenation ; Hydrogen ; Industrial Chemistry/Chemical Engineering ; Oligomers ; Organometallic Chemistry ; Phenols ; Physical Chemistry ; Reaction kinetics ; Thermodynamics</subject><ispartof>Catalysis letters, 2019-09, Vol.149 (9), p.2453-2467</ispartof><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-9a84bd15047e041932722008d74db0bd92ed361d5cb159359db8ac8fff01711c3</citedby><cites>FETCH-LOGICAL-c436t-9a84bd15047e041932722008d74db0bd92ed361d5cb159359db8ac8fff01711c3</cites><orcidid>0000-0003-0788-2643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sulman, Alexandrina</creatorcontrib><creatorcontrib>Mäki-Arvela, Päivi</creatorcontrib><creatorcontrib>Bomont, Louis</creatorcontrib><creatorcontrib>Alda-Onggar, Moldir</creatorcontrib><creatorcontrib>Fedorov, Vyacheslav</creatorcontrib><creatorcontrib>Russo, Vincenzo</creatorcontrib><creatorcontrib>Eränen, Kari</creatorcontrib><creatorcontrib>Peurla, Markus</creatorcontrib><creatorcontrib>Akhmetzyanova, Uliana</creatorcontrib><creatorcontrib>Skuhrovcová, Lenka</creatorcontrib><creatorcontrib>Tišler, Zdeněk</creatorcontrib><creatorcontrib>Grénman, Henrik</creatorcontrib><creatorcontrib>Wärnå, Johan</creatorcontrib><creatorcontrib>Murzin, Dmitry Yu</creatorcontrib><title>Kinetic and Thermodynamic Analysis of Guaiacol Hydrodeoxygenation</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>Kinetics of guaiacol hydrodeoxygenation (HDO) was studied using supported Mo x C–SBA-15 and as a comparison 5 wt% Pt/C under 30 bar hydrogen at 200 °C and 300 °C. Catalyst characterization was done by a range of physical methods including also determination of the amount of coke and the nature of adsorbed species. Pt/C gave 2-methoxycyclohexanol as the main product, whereas Mo 2 C–SBA-15 promoted direct deoxygenation exhibiting also strong adsorption of guaiacol on the catalyst surface and formation of oligomers. Thermodynamics of guaiacol HDO was elucidated and the reaction network was proposed based on which kinetic modelling was done. Graphic Abstract</description><subject>Analysis</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Deoxygenation</subject><subject>Hydrogen</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Oligomers</subject><subject>Organometallic Chemistry</subject><subject>Phenols</subject><subject>Physical Chemistry</subject><subject>Reaction kinetics</subject><subject>Thermodynamics</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kd9LwzAQx4soOKf_gE8Fn3zovEt_pHkcQ7fhQNAJewtpk9aOLZlJB-1_b7SC7EXycOH4fI47vkFwizBBAPrgENKMRIAsApKnWdSdBSNMKYlyyjbn_g-IUUzJ5jK4cm4LAIwiGwXT50artilDoWW4_lB2b2Svxd53plrsete40FTh_CgaUZpduOilNVKZrq-VFm1j9HVwUYmdUze_dRy8Pz2uZ4to9TJfzqarqEzirI2YyJNCYgoJVZAgiwklBCCXNJEFFJIRJeMMZVoWmLI4ZbLIRZlXVQVIEct4HNwNcw_WfB6Va_nWHK3f0XGSQEZZ4m_y1GSgarFTvNGVaa0o_ZPK32S0qhrfn6aMkAzzLPfC_YngmVZ1bS2OzvHl2-spSwa2tMY5qyp-sM1e2J4j8O8c-JAD9znwnxx456V4kJyHda3s397_WF_M34oC</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Sulman, Alexandrina</creator><creator>Mäki-Arvela, Päivi</creator><creator>Bomont, Louis</creator><creator>Alda-Onggar, Moldir</creator><creator>Fedorov, Vyacheslav</creator><creator>Russo, Vincenzo</creator><creator>Eränen, Kari</creator><creator>Peurla, Markus</creator><creator>Akhmetzyanova, Uliana</creator><creator>Skuhrovcová, Lenka</creator><creator>Tišler, Zdeněk</creator><creator>Grénman, Henrik</creator><creator>Wärnå, Johan</creator><creator>Murzin, Dmitry Yu</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0788-2643</orcidid></search><sort><creationdate>20190901</creationdate><title>Kinetic and Thermodynamic Analysis of Guaiacol Hydrodeoxygenation</title><author>Sulman, Alexandrina ; Mäki-Arvela, Päivi ; Bomont, Louis ; Alda-Onggar, Moldir ; Fedorov, Vyacheslav ; Russo, Vincenzo ; Eränen, Kari ; Peurla, Markus ; Akhmetzyanova, Uliana ; Skuhrovcová, Lenka ; Tišler, Zdeněk ; Grénman, Henrik ; Wärnå, Johan ; Murzin, Dmitry Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-9a84bd15047e041932722008d74db0bd92ed361d5cb159359db8ac8fff01711c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Deoxygenation</topic><topic>Hydrogen</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Oligomers</topic><topic>Organometallic Chemistry</topic><topic>Phenols</topic><topic>Physical Chemistry</topic><topic>Reaction kinetics</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sulman, Alexandrina</creatorcontrib><creatorcontrib>Mäki-Arvela, Päivi</creatorcontrib><creatorcontrib>Bomont, Louis</creatorcontrib><creatorcontrib>Alda-Onggar, Moldir</creatorcontrib><creatorcontrib>Fedorov, Vyacheslav</creatorcontrib><creatorcontrib>Russo, Vincenzo</creatorcontrib><creatorcontrib>Eränen, Kari</creatorcontrib><creatorcontrib>Peurla, Markus</creatorcontrib><creatorcontrib>Akhmetzyanova, Uliana</creatorcontrib><creatorcontrib>Skuhrovcová, Lenka</creatorcontrib><creatorcontrib>Tišler, Zdeněk</creatorcontrib><creatorcontrib>Grénman, Henrik</creatorcontrib><creatorcontrib>Wärnå, Johan</creatorcontrib><creatorcontrib>Murzin, Dmitry Yu</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sulman, Alexandrina</au><au>Mäki-Arvela, Päivi</au><au>Bomont, Louis</au><au>Alda-Onggar, Moldir</au><au>Fedorov, Vyacheslav</au><au>Russo, Vincenzo</au><au>Eränen, Kari</au><au>Peurla, Markus</au><au>Akhmetzyanova, Uliana</au><au>Skuhrovcová, Lenka</au><au>Tišler, Zdeněk</au><au>Grénman, Henrik</au><au>Wärnå, Johan</au><au>Murzin, Dmitry Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic and Thermodynamic Analysis of Guaiacol Hydrodeoxygenation</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>149</volume><issue>9</issue><spage>2453</spage><epage>2467</epage><pages>2453-2467</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>Kinetics of guaiacol hydrodeoxygenation (HDO) was studied using supported Mo x C–SBA-15 and as a comparison 5 wt% Pt/C under 30 bar hydrogen at 200 °C and 300 °C. Catalyst characterization was done by a range of physical methods including also determination of the amount of coke and the nature of adsorbed species. Pt/C gave 2-methoxycyclohexanol as the main product, whereas Mo 2 C–SBA-15 promoted direct deoxygenation exhibiting also strong adsorption of guaiacol on the catalyst surface and formation of oligomers. Thermodynamics of guaiacol HDO was elucidated and the reaction network was proposed based on which kinetic modelling was done. Graphic Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-019-02856-x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0788-2643</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1011-372X
ispartof Catalysis letters, 2019-09, Vol.149 (9), p.2453-2467
issn 1011-372X
1572-879X
language eng
recordid cdi_proquest_journals_2406794009
source Springer Nature
subjects Analysis
Catalysis
Catalysts
Chemistry
Chemistry and Materials Science
Deoxygenation
Hydrogen
Industrial Chemistry/Chemical Engineering
Oligomers
Organometallic Chemistry
Phenols
Physical Chemistry
Reaction kinetics
Thermodynamics
title Kinetic and Thermodynamic Analysis of Guaiacol Hydrodeoxygenation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T14%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20and%20Thermodynamic%20Analysis%20of%20Guaiacol%20Hydrodeoxygenation&rft.jtitle=Catalysis%20letters&rft.au=Sulman,%20Alexandrina&rft.date=2019-09-01&rft.volume=149&rft.issue=9&rft.spage=2453&rft.epage=2467&rft.pages=2453-2467&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-019-02856-x&rft_dat=%3Cgale_proqu%3EA592261868%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-9a84bd15047e041932722008d74db0bd92ed361d5cb159359db8ac8fff01711c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2406794009&rft_id=info:pmid/&rft_galeid=A592261868&rfr_iscdi=true