Loading…
A Process‐Based Framework to Characterize and Classify Runoff Events: The Event Typology of Germany
This study proposes a new process‐based framework to characterize and classify runoff events of various magnitudes occurring in a wide range of catchments. The framework uses dimensionless indicators that characterize space–time dynamics of precipitation events and their spatial interaction with ant...
Saved in:
Published in: | Water resources research 2020-05, Vol.56 (5), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study proposes a new process‐based framework to characterize and classify runoff events of various magnitudes occurring in a wide range of catchments. The framework uses dimensionless indicators that characterize space–time dynamics of precipitation events and their spatial interaction with antecedent catchment states, described as snow cover, distribution of frozen soils, and soil moisture content. A rigorous uncertainty analysis showed that the developed indicators are robust and regionally consistent. Relying on covariance‐ and ratio‐based indicators leads to reduced classification uncertainty compared to commonly used (event‐based) indicators based on absolute values of metrics such as duration, volume, and intensity of precipitation events. The event typology derived from the proposed framework is able to stratify events that exhibit distinct hydrograph dynamics even if streamflow is not directly used for classification. The derived typology is therefore able to capture first‐order controls of event runoff response in a wide variety of catchments. Application of this typology to about 180,000 runoff events observed in 392 German catchments revealed six distinct regions with homogeneous event type frequency that match well regions with similar behavior in terms of runoff response identified in Germany. The detected seasonal pattern of event type occurrence is regionally consistent and agrees well with the seasonality of hydroclimatic conditions. The proposed framework can be a useful tool for comparative analyses of regional differences and similarities of runoff generation processes at catchment scale and their possible spatial and temporal evolution.
Key Points
A new process‐based framework for characterizing runoff events of diverse sizes is proposed and applied to a wide set of catchments
Novel indicators combining the space–time dynamics of event precipitation and catchment state are used for classification
The derived event typology captures distinct shapes of event hydrographs even if streamflow data are not directly used for classification |
---|---|
ISSN: | 0043-1397 1944-7973 |
DOI: | 10.1029/2019WR026951 |