Loading…
Temporal dynamics of resonant scattering of an ultrashort laser pulse by an atom
Within the framework of the second order of perturbation theory and the dipole approximation, we derived simple formulas describing the temporal dynamics of ultrashort laser pulse scattering in terms of the scattering tensor and the Fourier transform of the strength of the electric field in a pulse....
Saved in:
Published in: | Applied physics. B, Lasers and optics Lasers and optics, 2020-06, Vol.126 (6), Article 110 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Within the framework of the second order of perturbation theory and the dipole approximation, we derived simple formulas describing the temporal dynamics of ultrashort laser pulse scattering in terms of the scattering tensor and the Fourier transform of the strength of the electric field in a pulse. This expression was used for description of resonant scattering of an ultrashort pulse by an atom. We study the dependence of the spectral scattering probability as a function of time and scattering frequency. In particular, it is shown that the time dependence of the spectral scattering probability for certain values of parameters is of oscillatory character, while the integral scattering probability is always a monotonically increasing function of time. |
---|---|
ISSN: | 0946-2171 1432-0649 |
DOI: | 10.1007/s00340-020-07465-w |