Loading…

Opinion formation in social networks: a time-variant and non-linear model

This paper develops a discrete-time, non-linear, and time-variant model of opinion formation in a social network with global interactions to investigate the relationship between the final consensus belief and the set of agents’ initial opinions. The model uses a novel and considerably intuitive upda...

Full description

Saved in:
Bibliographic Details
Published in:Complex & intelligent systems 2016-12, Vol.2 (4), p.269-284
Main Authors: Sotiropoulos, Dionisios N., Bilanakos, Christos, Giaglis, George M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c289t-5b52114d45b65416efc591ca32dd54f191cc5df5056347779d539faeb4ea1d013
cites cdi_FETCH-LOGICAL-c289t-5b52114d45b65416efc591ca32dd54f191cc5df5056347779d539faeb4ea1d013
container_end_page 284
container_issue 4
container_start_page 269
container_title Complex & intelligent systems
container_volume 2
creator Sotiropoulos, Dionisios N.
Bilanakos, Christos
Giaglis, George M.
description This paper develops a discrete-time, non-linear, and time-variant model of opinion formation in a social network with global interactions to investigate the relationship between the final consensus belief and the set of agents’ initial opinions. The model uses a novel and considerably intuitive updating rule, according to which the weight placed by an agent on another one’s opinion in each period decreases continuously with the distance between their beliefs in the previous period. In this context, the first part of our analysis proves that agents’ beliefs converge and reach a consensus over time (under a fairly general set of conditions). For the two-agent case, it is then shown that the consensus belief is the simple arithmetic mean of the initial opinions. When there are three agents in the network, the combined use of computational and analytical methods reveals a relatively more complex polynomial relationship between long-run and initial beliefs. In particular, our results for the three-agent case imply that the deviation of the limiting belief from the corresponding average of the initial beliefs can be expressed as a third degree polynomial function incorporating the pairwise differences of agents’ starting beliefs.
doi_str_mv 10.1007/s40747-016-0029-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2406975503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406975503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-5b52114d45b65416efc591ca32dd54f191cc5df5056347779d539faeb4ea1d013</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLuA6-jNa9K4k-KjUOhG1yGdZCR1JqnJVPHfO-MIrlzdb3HOufAhdEnhmgKomyJACUWAVgSAaUJP0IxRvSQVSH76w5oIyatztChlDwBUqSUHNkPr7SHEkCJuUu5sP1KIuKQ62BZH33-m_FZuscV96Dz5sDnY2GMbHY4pkjZEbzPukvPtBTprbFv84vfO0cvD_fPqiWy2j-vV3YbUbKl7IneSUSqckLtKClr5ppaa1pYz56Ro6MC1dI0EWXGhlNJOct1YvxPeUgeUz9HVtHvI6f3oS2_26Zjj8NIwAZVWUgIfUnRK1TmVkn1jDjl0Nn8ZCmaUZiZpZpBmRmlmXGZTpwzZ-Orz3_L_pW_iB236</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406975503</pqid></control><display><type>article</type><title>Opinion formation in social networks: a time-variant and non-linear model</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Sotiropoulos, Dionisios N. ; Bilanakos, Christos ; Giaglis, George M.</creator><creatorcontrib>Sotiropoulos, Dionisios N. ; Bilanakos, Christos ; Giaglis, George M.</creatorcontrib><description>This paper develops a discrete-time, non-linear, and time-variant model of opinion formation in a social network with global interactions to investigate the relationship between the final consensus belief and the set of agents’ initial opinions. The model uses a novel and considerably intuitive updating rule, according to which the weight placed by an agent on another one’s opinion in each period decreases continuously with the distance between their beliefs in the previous period. In this context, the first part of our analysis proves that agents’ beliefs converge and reach a consensus over time (under a fairly general set of conditions). For the two-agent case, it is then shown that the consensus belief is the simple arithmetic mean of the initial opinions. When there are three agents in the network, the combined use of computational and analytical methods reveals a relatively more complex polynomial relationship between long-run and initial beliefs. In particular, our results for the three-agent case imply that the deviation of the limiting belief from the corresponding average of the initial beliefs can be expressed as a third degree polynomial function incorporating the pairwise differences of agents’ starting beliefs.</description><identifier>ISSN: 2199-4536</identifier><identifier>EISSN: 2198-6053</identifier><identifier>DOI: 10.1007/s40747-016-0029-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complexity ; Computational Intelligence ; Data Structures and Information Theory ; Engineering ; Original Article ; Polynomials ; Social networks</subject><ispartof>Complex &amp; intelligent systems, 2016-12, Vol.2 (4), p.269-284</ispartof><rights>The Author(s) 2016</rights><rights>The Author(s) 2016. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-5b52114d45b65416efc591ca32dd54f191cc5df5056347779d539faeb4ea1d013</citedby><cites>FETCH-LOGICAL-c289t-5b52114d45b65416efc591ca32dd54f191cc5df5056347779d539faeb4ea1d013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2406975503?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Sotiropoulos, Dionisios N.</creatorcontrib><creatorcontrib>Bilanakos, Christos</creatorcontrib><creatorcontrib>Giaglis, George M.</creatorcontrib><title>Opinion formation in social networks: a time-variant and non-linear model</title><title>Complex &amp; intelligent systems</title><addtitle>Complex Intell. Syst</addtitle><description>This paper develops a discrete-time, non-linear, and time-variant model of opinion formation in a social network with global interactions to investigate the relationship between the final consensus belief and the set of agents’ initial opinions. The model uses a novel and considerably intuitive updating rule, according to which the weight placed by an agent on another one’s opinion in each period decreases continuously with the distance between their beliefs in the previous period. In this context, the first part of our analysis proves that agents’ beliefs converge and reach a consensus over time (under a fairly general set of conditions). For the two-agent case, it is then shown that the consensus belief is the simple arithmetic mean of the initial opinions. When there are three agents in the network, the combined use of computational and analytical methods reveals a relatively more complex polynomial relationship between long-run and initial beliefs. In particular, our results for the three-agent case imply that the deviation of the limiting belief from the corresponding average of the initial beliefs can be expressed as a third degree polynomial function incorporating the pairwise differences of agents’ starting beliefs.</description><subject>Complexity</subject><subject>Computational Intelligence</subject><subject>Data Structures and Information Theory</subject><subject>Engineering</subject><subject>Original Article</subject><subject>Polynomials</subject><subject>Social networks</subject><issn>2199-4536</issn><issn>2198-6053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kEtLAzEUhYMoWGp_gLuA6-jNa9K4k-KjUOhG1yGdZCR1JqnJVPHfO-MIrlzdb3HOufAhdEnhmgKomyJACUWAVgSAaUJP0IxRvSQVSH76w5oIyatztChlDwBUqSUHNkPr7SHEkCJuUu5sP1KIuKQ62BZH33-m_FZuscV96Dz5sDnY2GMbHY4pkjZEbzPukvPtBTprbFv84vfO0cvD_fPqiWy2j-vV3YbUbKl7IneSUSqckLtKClr5ppaa1pYz56Ro6MC1dI0EWXGhlNJOct1YvxPeUgeUz9HVtHvI6f3oS2_26Zjj8NIwAZVWUgIfUnRK1TmVkn1jDjl0Nn8ZCmaUZiZpZpBmRmlmXGZTpwzZ-Orz3_L_pW_iB236</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Sotiropoulos, Dionisios N.</creator><creator>Bilanakos, Christos</creator><creator>Giaglis, George M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20161201</creationdate><title>Opinion formation in social networks: a time-variant and non-linear model</title><author>Sotiropoulos, Dionisios N. ; Bilanakos, Christos ; Giaglis, George M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-5b52114d45b65416efc591ca32dd54f191cc5df5056347779d539faeb4ea1d013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Complexity</topic><topic>Computational Intelligence</topic><topic>Data Structures and Information Theory</topic><topic>Engineering</topic><topic>Original Article</topic><topic>Polynomials</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sotiropoulos, Dionisios N.</creatorcontrib><creatorcontrib>Bilanakos, Christos</creatorcontrib><creatorcontrib>Giaglis, George M.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Complex &amp; intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sotiropoulos, Dionisios N.</au><au>Bilanakos, Christos</au><au>Giaglis, George M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opinion formation in social networks: a time-variant and non-linear model</atitle><jtitle>Complex &amp; intelligent systems</jtitle><stitle>Complex Intell. Syst</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>2</volume><issue>4</issue><spage>269</spage><epage>284</epage><pages>269-284</pages><issn>2199-4536</issn><eissn>2198-6053</eissn><abstract>This paper develops a discrete-time, non-linear, and time-variant model of opinion formation in a social network with global interactions to investigate the relationship between the final consensus belief and the set of agents’ initial opinions. The model uses a novel and considerably intuitive updating rule, according to which the weight placed by an agent on another one’s opinion in each period decreases continuously with the distance between their beliefs in the previous period. In this context, the first part of our analysis proves that agents’ beliefs converge and reach a consensus over time (under a fairly general set of conditions). For the two-agent case, it is then shown that the consensus belief is the simple arithmetic mean of the initial opinions. When there are three agents in the network, the combined use of computational and analytical methods reveals a relatively more complex polynomial relationship between long-run and initial beliefs. In particular, our results for the three-agent case imply that the deviation of the limiting belief from the corresponding average of the initial beliefs can be expressed as a third degree polynomial function incorporating the pairwise differences of agents’ starting beliefs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40747-016-0029-1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2199-4536
ispartof Complex & intelligent systems, 2016-12, Vol.2 (4), p.269-284
issn 2199-4536
2198-6053
language eng
recordid cdi_proquest_journals_2406975503
source Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest)
subjects Complexity
Computational Intelligence
Data Structures and Information Theory
Engineering
Original Article
Polynomials
Social networks
title Opinion formation in social networks: a time-variant and non-linear model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opinion%20formation%20in%20social%20networks:%20a%20time-variant%20and%20non-linear%20model&rft.jtitle=Complex%20&%20intelligent%20systems&rft.au=Sotiropoulos,%20Dionisios%20N.&rft.date=2016-12-01&rft.volume=2&rft.issue=4&rft.spage=269&rft.epage=284&rft.pages=269-284&rft.issn=2199-4536&rft.eissn=2198-6053&rft_id=info:doi/10.1007/s40747-016-0029-1&rft_dat=%3Cproquest_cross%3E2406975503%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-5b52114d45b65416efc591ca32dd54f191cc5df5056347779d539faeb4ea1d013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2406975503&rft_id=info:pmid/&rfr_iscdi=true