Loading…
Opinion formation in social networks: a time-variant and non-linear model
This paper develops a discrete-time, non-linear, and time-variant model of opinion formation in a social network with global interactions to investigate the relationship between the final consensus belief and the set of agents’ initial opinions. The model uses a novel and considerably intuitive upda...
Saved in:
Published in: | Complex & intelligent systems 2016-12, Vol.2 (4), p.269-284 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c289t-5b52114d45b65416efc591ca32dd54f191cc5df5056347779d539faeb4ea1d013 |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-5b52114d45b65416efc591ca32dd54f191cc5df5056347779d539faeb4ea1d013 |
container_end_page | 284 |
container_issue | 4 |
container_start_page | 269 |
container_title | Complex & intelligent systems |
container_volume | 2 |
creator | Sotiropoulos, Dionisios N. Bilanakos, Christos Giaglis, George M. |
description | This paper develops a discrete-time, non-linear, and time-variant model of opinion formation in a social network with global interactions to investigate the relationship between the final consensus belief and the set of agents’ initial opinions. The model uses a novel and considerably intuitive updating rule, according to which the weight placed by an agent on another one’s opinion in each period decreases continuously with the distance between their beliefs in the previous period. In this context, the first part of our analysis proves that agents’ beliefs converge and reach a consensus over time (under a fairly general set of conditions). For the two-agent case, it is then shown that the consensus belief is the simple arithmetic mean of the initial opinions. When there are three agents in the network, the combined use of computational and analytical methods reveals a relatively more complex polynomial relationship between long-run and initial beliefs. In particular, our results for the three-agent case imply that the deviation of the limiting belief from the corresponding average of the initial beliefs can be expressed as a third degree polynomial function incorporating the pairwise differences of agents’ starting beliefs. |
doi_str_mv | 10.1007/s40747-016-0029-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2406975503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406975503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-5b52114d45b65416efc591ca32dd54f191cc5df5056347779d539faeb4ea1d013</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLuA6-jNa9K4k-KjUOhG1yGdZCR1JqnJVPHfO-MIrlzdb3HOufAhdEnhmgKomyJACUWAVgSAaUJP0IxRvSQVSH76w5oIyatztChlDwBUqSUHNkPr7SHEkCJuUu5sP1KIuKQ62BZH33-m_FZuscV96Dz5sDnY2GMbHY4pkjZEbzPukvPtBTprbFv84vfO0cvD_fPqiWy2j-vV3YbUbKl7IneSUSqckLtKClr5ppaa1pYz56Ro6MC1dI0EWXGhlNJOct1YvxPeUgeUz9HVtHvI6f3oS2_26Zjj8NIwAZVWUgIfUnRK1TmVkn1jDjl0Nn8ZCmaUZiZpZpBmRmlmXGZTpwzZ-Orz3_L_pW_iB236</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406975503</pqid></control><display><type>article</type><title>Opinion formation in social networks: a time-variant and non-linear model</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Sotiropoulos, Dionisios N. ; Bilanakos, Christos ; Giaglis, George M.</creator><creatorcontrib>Sotiropoulos, Dionisios N. ; Bilanakos, Christos ; Giaglis, George M.</creatorcontrib><description>This paper develops a discrete-time, non-linear, and time-variant model of opinion formation in a social network with global interactions to investigate the relationship between the final consensus belief and the set of agents’ initial opinions. The model uses a novel and considerably intuitive updating rule, according to which the weight placed by an agent on another one’s opinion in each period decreases continuously with the distance between their beliefs in the previous period. In this context, the first part of our analysis proves that agents’ beliefs converge and reach a consensus over time (under a fairly general set of conditions). For the two-agent case, it is then shown that the consensus belief is the simple arithmetic mean of the initial opinions. When there are three agents in the network, the combined use of computational and analytical methods reveals a relatively more complex polynomial relationship between long-run and initial beliefs. In particular, our results for the three-agent case imply that the deviation of the limiting belief from the corresponding average of the initial beliefs can be expressed as a third degree polynomial function incorporating the pairwise differences of agents’ starting beliefs.</description><identifier>ISSN: 2199-4536</identifier><identifier>EISSN: 2198-6053</identifier><identifier>DOI: 10.1007/s40747-016-0029-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complexity ; Computational Intelligence ; Data Structures and Information Theory ; Engineering ; Original Article ; Polynomials ; Social networks</subject><ispartof>Complex & intelligent systems, 2016-12, Vol.2 (4), p.269-284</ispartof><rights>The Author(s) 2016</rights><rights>The Author(s) 2016. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-5b52114d45b65416efc591ca32dd54f191cc5df5056347779d539faeb4ea1d013</citedby><cites>FETCH-LOGICAL-c289t-5b52114d45b65416efc591ca32dd54f191cc5df5056347779d539faeb4ea1d013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2406975503?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Sotiropoulos, Dionisios N.</creatorcontrib><creatorcontrib>Bilanakos, Christos</creatorcontrib><creatorcontrib>Giaglis, George M.</creatorcontrib><title>Opinion formation in social networks: a time-variant and non-linear model</title><title>Complex & intelligent systems</title><addtitle>Complex Intell. Syst</addtitle><description>This paper develops a discrete-time, non-linear, and time-variant model of opinion formation in a social network with global interactions to investigate the relationship between the final consensus belief and the set of agents’ initial opinions. The model uses a novel and considerably intuitive updating rule, according to which the weight placed by an agent on another one’s opinion in each period decreases continuously with the distance between their beliefs in the previous period. In this context, the first part of our analysis proves that agents’ beliefs converge and reach a consensus over time (under a fairly general set of conditions). For the two-agent case, it is then shown that the consensus belief is the simple arithmetic mean of the initial opinions. When there are three agents in the network, the combined use of computational and analytical methods reveals a relatively more complex polynomial relationship between long-run and initial beliefs. In particular, our results for the three-agent case imply that the deviation of the limiting belief from the corresponding average of the initial beliefs can be expressed as a third degree polynomial function incorporating the pairwise differences of agents’ starting beliefs.</description><subject>Complexity</subject><subject>Computational Intelligence</subject><subject>Data Structures and Information Theory</subject><subject>Engineering</subject><subject>Original Article</subject><subject>Polynomials</subject><subject>Social networks</subject><issn>2199-4536</issn><issn>2198-6053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kEtLAzEUhYMoWGp_gLuA6-jNa9K4k-KjUOhG1yGdZCR1JqnJVPHfO-MIrlzdb3HOufAhdEnhmgKomyJACUWAVgSAaUJP0IxRvSQVSH76w5oIyatztChlDwBUqSUHNkPr7SHEkCJuUu5sP1KIuKQ62BZH33-m_FZuscV96Dz5sDnY2GMbHY4pkjZEbzPukvPtBTprbFv84vfO0cvD_fPqiWy2j-vV3YbUbKl7IneSUSqckLtKClr5ppaa1pYz56Ro6MC1dI0EWXGhlNJOct1YvxPeUgeUz9HVtHvI6f3oS2_26Zjj8NIwAZVWUgIfUnRK1TmVkn1jDjl0Nn8ZCmaUZiZpZpBmRmlmXGZTpwzZ-Orz3_L_pW_iB236</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Sotiropoulos, Dionisios N.</creator><creator>Bilanakos, Christos</creator><creator>Giaglis, George M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20161201</creationdate><title>Opinion formation in social networks: a time-variant and non-linear model</title><author>Sotiropoulos, Dionisios N. ; Bilanakos, Christos ; Giaglis, George M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-5b52114d45b65416efc591ca32dd54f191cc5df5056347779d539faeb4ea1d013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Complexity</topic><topic>Computational Intelligence</topic><topic>Data Structures and Information Theory</topic><topic>Engineering</topic><topic>Original Article</topic><topic>Polynomials</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sotiropoulos, Dionisios N.</creatorcontrib><creatorcontrib>Bilanakos, Christos</creatorcontrib><creatorcontrib>Giaglis, George M.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Complex & intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sotiropoulos, Dionisios N.</au><au>Bilanakos, Christos</au><au>Giaglis, George M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opinion formation in social networks: a time-variant and non-linear model</atitle><jtitle>Complex & intelligent systems</jtitle><stitle>Complex Intell. Syst</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>2</volume><issue>4</issue><spage>269</spage><epage>284</epage><pages>269-284</pages><issn>2199-4536</issn><eissn>2198-6053</eissn><abstract>This paper develops a discrete-time, non-linear, and time-variant model of opinion formation in a social network with global interactions to investigate the relationship between the final consensus belief and the set of agents’ initial opinions. The model uses a novel and considerably intuitive updating rule, according to which the weight placed by an agent on another one’s opinion in each period decreases continuously with the distance between their beliefs in the previous period. In this context, the first part of our analysis proves that agents’ beliefs converge and reach a consensus over time (under a fairly general set of conditions). For the two-agent case, it is then shown that the consensus belief is the simple arithmetic mean of the initial opinions. When there are three agents in the network, the combined use of computational and analytical methods reveals a relatively more complex polynomial relationship between long-run and initial beliefs. In particular, our results for the three-agent case imply that the deviation of the limiting belief from the corresponding average of the initial beliefs can be expressed as a third degree polynomial function incorporating the pairwise differences of agents’ starting beliefs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40747-016-0029-1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2199-4536 |
ispartof | Complex & intelligent systems, 2016-12, Vol.2 (4), p.269-284 |
issn | 2199-4536 2198-6053 |
language | eng |
recordid | cdi_proquest_journals_2406975503 |
source | Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest) |
subjects | Complexity Computational Intelligence Data Structures and Information Theory Engineering Original Article Polynomials Social networks |
title | Opinion formation in social networks: a time-variant and non-linear model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opinion%20formation%20in%20social%20networks:%20a%20time-variant%20and%20non-linear%20model&rft.jtitle=Complex%20&%20intelligent%20systems&rft.au=Sotiropoulos,%20Dionisios%20N.&rft.date=2016-12-01&rft.volume=2&rft.issue=4&rft.spage=269&rft.epage=284&rft.pages=269-284&rft.issn=2199-4536&rft.eissn=2198-6053&rft_id=info:doi/10.1007/s40747-016-0029-1&rft_dat=%3Cproquest_cross%3E2406975503%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-5b52114d45b65416efc591ca32dd54f191cc5df5056347779d539faeb4ea1d013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2406975503&rft_id=info:pmid/&rfr_iscdi=true |