Loading…

Performance of a zero-inertia model for irrigation with rapidly varied inflow discharges

The zero-inertia model is widely used for simulating surface flow in irrigation systems. This model is accurate when inflow discharge is constant. However, simulation of irrigation systems with rapidly varied inflow discharge is needed due to the development of real time control irrigation technolog...

Full description

Saved in:
Bibliographic Details
Published in:International journal of agricultural and biological engineering 2020-03, Vol.13 (2), p.175-181
Main Authors: Liu, Kaihua, Jiao, Xiyun, Li, Jiang, An, Yunhao, Guo, Weihua, Khaled Salahou, Mohamed, Sang, Honghui
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The zero-inertia model is widely used for simulating surface flow in irrigation systems. This model is accurate when inflow discharge is constant. However, simulation of irrigation systems with rapidly varied inflow discharge is needed due to the development of real time control irrigation technology. Hence, the objective of this study is to validate the zero-inertia model with rapidly varied inflow discharge. For this purpose, twenty-three border irrigation tests at a range of inflow changes on different field slopes and roughness coefficients were conducted. Then, the sensitivity analyses of bed slope, infiltration parameters, and roughness coefficient were examined. The results indicate that the zero-inertia model predictions are in good agreement with field data in both advance/recession times and flow depths. The infiltration parameters were the most sensitive input variable of the zero-inertia model. The input variables have a more considerable impact on the recession phase than the advance phase.
ISSN:1934-6344
1934-6352
DOI:10.25165/j.ijabe.20201302.5228