Loading…

Per-Antenna Power Constrained Transceiver Design for MIMO Multisource and Multidestination Amplify-and-Forward Relay Systems

This study addresses the transceiver design method for multiple-input multiple-output multisource multidestination amplify-and-forward relay systems. The source, relay, and destination filters are designed to minimize the sum mean-squared-error under the per-antenna power constraints at the source a...

Full description

Saved in:
Bibliographic Details
Published in:Wireless personal communications 2020-06, Vol.112 (3), p.1503-1515
Main Author: Shin, Joonwoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study addresses the transceiver design method for multiple-input multiple-output multisource multidestination amplify-and-forward relay systems. The source, relay, and destination filters are designed to minimize the sum mean-squared-error under the per-antenna power constraints at the source and relay nodes. The joint optimization is challenging due to its non-convexity and multiple power constraints. To resolve these difficulties, we propose a source and relay filter design method and present an alternating algorithm that is based on the block-coordinate descent method. Specifically, by introducing transmit-centric modified MSEs and reformulating the problem, the non-convex problem is transformed into tractable forms with multiple power constraints. The multiple power constraints are then adjusted by semidefinite programming of the source filters and a 1-D line search method for the relay transceiver. Simulation results demonstrate the effectiveness of the proposed schemes under the per-antenna power constraints that are compared with the conventional method under the sum power constraints.
ISSN:0929-6212
1572-834X
DOI:10.1007/s11277-020-07112-9