Loading…
Frozen-Density Embedding Theory based simulations with experimental electron densities
The basic idea of Frozen-Density Embedding Theory (FDET) is the constrained minimisation of the Hohenberg-Kohn density functional \(E^{HK}[\rho]\) performed using the auxiliary functional \(E_{v_{AB}}^{FDET}[\Psi_A,\rho_B]\), where \(\Psi_A\) is the embedded \(N_A\)-electron wave-function and \(\rho...
Saved in:
Published in: | arXiv.org 2020-06 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ricardi, Niccolò Ernst, Michelle Macchi, Piero Wesolowski, Tomasz A |
description | The basic idea of Frozen-Density Embedding Theory (FDET) is the constrained minimisation of the Hohenberg-Kohn density functional \(E^{HK}[\rho]\) performed using the auxiliary functional \(E_{v_{AB}}^{FDET}[\Psi_A,\rho_B]\), where \(\Psi_A\) is the embedded \(N_A\)-electron wave-function and \(\rho_B(\vec{\mathrm{r}})\) a non-negative function in real space integrating to a given number of electrons \(N_B\). This choice of independent variables in the total energy functional \(E_{v_{AB}}^{FDET}[\Psi_A,\rho_B]\) makes it possible to treat the corresponding two components of the total density using different methods in multi-level simulations. We demonstrate, for the first time, the applications of FDET using \(\rho_B(\vec{\mathrm{r}})\) reconstructed from X-ray diffraction data on a molecular crystal. For eight hydrogen-bonded clusters involving a chromophore (represented with \(\Psi_A\)) and the glycylglycine molecule (represented as \(\rho_B(\vec{\mathrm{r}})\)), FDET is used to derive excitation energies. It is shown that experimental densities are suitable to be used as \(\rho_B(\vec{\mathrm{r}})\) in FDET based simulations. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2407477042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407477042</sourcerecordid><originalsourceid>FETCH-proquest_journals_24074770423</originalsourceid><addsrcrecordid>eNqNjEEKwjAQAIMgWLR_CHguxDQ13rXFBxSvJZrVpqRJzaZofb0iPsDTHGaYGUl4nm-yneB8QVLEjjHGt5IXRZ6QUxX8C1x2AIcmTrTsz6C1cTdat-DDRM8KQVM0_WhVNN4hfZjYUngOEEwPLipLwcIlBu-o_l4M4IrMr8oipD8uyboq6_0xG4K_j4Cx6fwY3Ec1XDAppGSC5_9Vb46MQkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407477042</pqid></control><display><type>article</type><title>Frozen-Density Embedding Theory based simulations with experimental electron densities</title><source>Publicly Available Content Database</source><creator>Ricardi, Niccolò ; Ernst, Michelle ; Macchi, Piero ; Wesolowski, Tomasz A</creator><creatorcontrib>Ricardi, Niccolò ; Ernst, Michelle ; Macchi, Piero ; Wesolowski, Tomasz A</creatorcontrib><description>The basic idea of Frozen-Density Embedding Theory (FDET) is the constrained minimisation of the Hohenberg-Kohn density functional \(E^{HK}[\rho]\) performed using the auxiliary functional \(E_{v_{AB}}^{FDET}[\Psi_A,\rho_B]\), where \(\Psi_A\) is the embedded \(N_A\)-electron wave-function and \(\rho_B(\vec{\mathrm{r}})\) a non-negative function in real space integrating to a given number of electrons \(N_B\). This choice of independent variables in the total energy functional \(E_{v_{AB}}^{FDET}[\Psi_A,\rho_B]\) makes it possible to treat the corresponding two components of the total density using different methods in multi-level simulations. We demonstrate, for the first time, the applications of FDET using \(\rho_B(\vec{\mathrm{r}})\) reconstructed from X-ray diffraction data on a molecular crystal. For eight hydrogen-bonded clusters involving a chromophore (represented with \(\Psi_A\)) and the glycylglycine molecule (represented as \(\rho_B(\vec{\mathrm{r}})\)), FDET is used to derive excitation energies. It is shown that experimental densities are suitable to be used as \(\rho_B(\vec{\mathrm{r}})\) in FDET based simulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chromophores ; Density ; Embedding ; Hydrogen bonding ; Independent variables ; Simulation</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2407477042?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Ricardi, Niccolò</creatorcontrib><creatorcontrib>Ernst, Michelle</creatorcontrib><creatorcontrib>Macchi, Piero</creatorcontrib><creatorcontrib>Wesolowski, Tomasz A</creatorcontrib><title>Frozen-Density Embedding Theory based simulations with experimental electron densities</title><title>arXiv.org</title><description>The basic idea of Frozen-Density Embedding Theory (FDET) is the constrained minimisation of the Hohenberg-Kohn density functional \(E^{HK}[\rho]\) performed using the auxiliary functional \(E_{v_{AB}}^{FDET}[\Psi_A,\rho_B]\), where \(\Psi_A\) is the embedded \(N_A\)-electron wave-function and \(\rho_B(\vec{\mathrm{r}})\) a non-negative function in real space integrating to a given number of electrons \(N_B\). This choice of independent variables in the total energy functional \(E_{v_{AB}}^{FDET}[\Psi_A,\rho_B]\) makes it possible to treat the corresponding two components of the total density using different methods in multi-level simulations. We demonstrate, for the first time, the applications of FDET using \(\rho_B(\vec{\mathrm{r}})\) reconstructed from X-ray diffraction data on a molecular crystal. For eight hydrogen-bonded clusters involving a chromophore (represented with \(\Psi_A\)) and the glycylglycine molecule (represented as \(\rho_B(\vec{\mathrm{r}})\)), FDET is used to derive excitation energies. It is shown that experimental densities are suitable to be used as \(\rho_B(\vec{\mathrm{r}})\) in FDET based simulations.</description><subject>Chromophores</subject><subject>Density</subject><subject>Embedding</subject><subject>Hydrogen bonding</subject><subject>Independent variables</subject><subject>Simulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEEKwjAQAIMgWLR_CHguxDQ13rXFBxSvJZrVpqRJzaZofb0iPsDTHGaYGUl4nm-yneB8QVLEjjHGt5IXRZ6QUxX8C1x2AIcmTrTsz6C1cTdat-DDRM8KQVM0_WhVNN4hfZjYUngOEEwPLipLwcIlBu-o_l4M4IrMr8oipD8uyboq6_0xG4K_j4Cx6fwY3Ec1XDAppGSC5_9Vb46MQkU</recordid><startdate>20200619</startdate><enddate>20200619</enddate><creator>Ricardi, Niccolò</creator><creator>Ernst, Michelle</creator><creator>Macchi, Piero</creator><creator>Wesolowski, Tomasz A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200619</creationdate><title>Frozen-Density Embedding Theory based simulations with experimental electron densities</title><author>Ricardi, Niccolò ; Ernst, Michelle ; Macchi, Piero ; Wesolowski, Tomasz A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24074770423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chromophores</topic><topic>Density</topic><topic>Embedding</topic><topic>Hydrogen bonding</topic><topic>Independent variables</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Ricardi, Niccolò</creatorcontrib><creatorcontrib>Ernst, Michelle</creatorcontrib><creatorcontrib>Macchi, Piero</creatorcontrib><creatorcontrib>Wesolowski, Tomasz A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ricardi, Niccolò</au><au>Ernst, Michelle</au><au>Macchi, Piero</au><au>Wesolowski, Tomasz A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Frozen-Density Embedding Theory based simulations with experimental electron densities</atitle><jtitle>arXiv.org</jtitle><date>2020-06-19</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The basic idea of Frozen-Density Embedding Theory (FDET) is the constrained minimisation of the Hohenberg-Kohn density functional \(E^{HK}[\rho]\) performed using the auxiliary functional \(E_{v_{AB}}^{FDET}[\Psi_A,\rho_B]\), where \(\Psi_A\) is the embedded \(N_A\)-electron wave-function and \(\rho_B(\vec{\mathrm{r}})\) a non-negative function in real space integrating to a given number of electrons \(N_B\). This choice of independent variables in the total energy functional \(E_{v_{AB}}^{FDET}[\Psi_A,\rho_B]\) makes it possible to treat the corresponding two components of the total density using different methods in multi-level simulations. We demonstrate, for the first time, the applications of FDET using \(\rho_B(\vec{\mathrm{r}})\) reconstructed from X-ray diffraction data on a molecular crystal. For eight hydrogen-bonded clusters involving a chromophore (represented with \(\Psi_A\)) and the glycylglycine molecule (represented as \(\rho_B(\vec{\mathrm{r}})\)), FDET is used to derive excitation energies. It is shown that experimental densities are suitable to be used as \(\rho_B(\vec{\mathrm{r}})\) in FDET based simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2407477042 |
source | Publicly Available Content Database |
subjects | Chromophores Density Embedding Hydrogen bonding Independent variables Simulation |
title | Frozen-Density Embedding Theory based simulations with experimental electron densities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Frozen-Density%20Embedding%20Theory%20based%20simulations%20with%20experimental%20electron%20densities&rft.jtitle=arXiv.org&rft.au=Ricardi,%20Niccol%C3%B2&rft.date=2020-06-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2407477042%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24074770423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407477042&rft_id=info:pmid/&rfr_iscdi=true |