Loading…

Mass Rigidity for Hyperbolic Manifolds

We prove the rigidity of the positive mass theorem for asymptotically hyperbolic manifolds. Namely, if the mass equality p 0 = p 1 2 + ⋯ + p n 2 holds, then the manifold is isometric to hyperbolic space. The result was previously proven for spin manifolds (Andersson and Dahl in Ann Glob Anal Geom 16...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2020-06, Vol.376 (3), p.2329-2349
Main Authors: Huang, Lan-Hsuan, Jang, Hyun Chul, Martin, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-c78ed1f1fb621266c35c9cf9d2a6b1d58a3b30727f6f2e1de10e32e04fd358fa3
cites cdi_FETCH-LOGICAL-c319t-c78ed1f1fb621266c35c9cf9d2a6b1d58a3b30727f6f2e1de10e32e04fd358fa3
container_end_page 2349
container_issue 3
container_start_page 2329
container_title Communications in mathematical physics
container_volume 376
creator Huang, Lan-Hsuan
Jang, Hyun Chul
Martin, Daniel
description We prove the rigidity of the positive mass theorem for asymptotically hyperbolic manifolds. Namely, if the mass equality p 0 = p 1 2 + ⋯ + p n 2 holds, then the manifold is isometric to hyperbolic space. The result was previously proven for spin manifolds (Andersson and Dahl in Ann Glob Anal Geom 16(1):1–2, 1998; Chruściel and Herzlich in Pac J Math 212(2):231–264, 2003; Min-Oo in Math Ann 285(4):527–539; 1989, Wang in J Differ Geom 57(2):273–299, 2001) or under special asymptotics (Andersson et al. in Ann. Henri Poincaré 9(1):1–33, 2008).
doi_str_mv 10.1007/s00220-019-03623-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407604454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407604454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c78ed1f1fb621266c35c9cf9d2a6b1d58a3b30727f6f2e1de10e32e04fd358fa3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWKt_wFVBcBd9L2nTdimDzggzCKLrkOZjyFDbmnQW_fdWK7hz8-7m3vPgEHKNcIcA5X0EYAwoYE2BC8YpnJAEc84o1ChOSQKAQLlAcU4uYjwAQM2ESMjtTsWYvfq9N36cMteHbDMNNjR963W2U513fWviJTlzqo326jdT8v70-Lba0O3L-nn1sKWaYz1SXVbWoEPXCIYzX_NC19rVhinRoCkqxRsOJSudcMyisQiWMwu5M7yonOIpuVm4Q-g_jzaO8tAfQze_lCyHUkCeF_ncYktLhz7GYJ0cgv9QYZII8tuHXHzI2Yf88THflPBlFOdyt7fhD_3P6gsf0GFS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407604454</pqid></control><display><type>article</type><title>Mass Rigidity for Hyperbolic Manifolds</title><source>Springer Link</source><creator>Huang, Lan-Hsuan ; Jang, Hyun Chul ; Martin, Daniel</creator><creatorcontrib>Huang, Lan-Hsuan ; Jang, Hyun Chul ; Martin, Daniel</creatorcontrib><description>We prove the rigidity of the positive mass theorem for asymptotically hyperbolic manifolds. Namely, if the mass equality p 0 = p 1 2 + ⋯ + p n 2 holds, then the manifold is isometric to hyperbolic space. The result was previously proven for spin manifolds (Andersson and Dahl in Ann Glob Anal Geom 16(1):1–2, 1998; Chruściel and Herzlich in Pac J Math 212(2):231–264, 2003; Min-Oo in Math Ann 285(4):527–539; 1989, Wang in J Differ Geom 57(2):273–299, 2001) or under special asymptotics (Andersson et al. in Ann. Henri Poincaré 9(1):1–33, 2008).</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03623-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Classical and Quantum Gravitation ; Complex Systems ; Manifolds ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Rigidity ; Theoretical</subject><ispartof>Communications in mathematical physics, 2020-06, Vol.376 (3), p.2329-2349</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c78ed1f1fb621266c35c9cf9d2a6b1d58a3b30727f6f2e1de10e32e04fd358fa3</citedby><cites>FETCH-LOGICAL-c319t-c78ed1f1fb621266c35c9cf9d2a6b1d58a3b30727f6f2e1de10e32e04fd358fa3</cites><orcidid>0000-0002-8918-3071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Huang, Lan-Hsuan</creatorcontrib><creatorcontrib>Jang, Hyun Chul</creatorcontrib><creatorcontrib>Martin, Daniel</creatorcontrib><title>Mass Rigidity for Hyperbolic Manifolds</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We prove the rigidity of the positive mass theorem for asymptotically hyperbolic manifolds. Namely, if the mass equality p 0 = p 1 2 + ⋯ + p n 2 holds, then the manifold is isometric to hyperbolic space. The result was previously proven for spin manifolds (Andersson and Dahl in Ann Glob Anal Geom 16(1):1–2, 1998; Chruściel and Herzlich in Pac J Math 212(2):231–264, 2003; Min-Oo in Math Ann 285(4):527–539; 1989, Wang in J Differ Geom 57(2):273–299, 2001) or under special asymptotics (Andersson et al. in Ann. Henri Poincaré 9(1):1–33, 2008).</description><subject>Asymptotic properties</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Manifolds</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Rigidity</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWKt_wFVBcBd9L2nTdimDzggzCKLrkOZjyFDbmnQW_fdWK7hz8-7m3vPgEHKNcIcA5X0EYAwoYE2BC8YpnJAEc84o1ChOSQKAQLlAcU4uYjwAQM2ESMjtTsWYvfq9N36cMteHbDMNNjR963W2U513fWviJTlzqo326jdT8v70-Lba0O3L-nn1sKWaYz1SXVbWoEPXCIYzX_NC19rVhinRoCkqxRsOJSudcMyisQiWMwu5M7yonOIpuVm4Q-g_jzaO8tAfQze_lCyHUkCeF_ncYktLhz7GYJ0cgv9QYZII8tuHXHzI2Yf88THflPBlFOdyt7fhD_3P6gsf0GFS</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Huang, Lan-Hsuan</creator><creator>Jang, Hyun Chul</creator><creator>Martin, Daniel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8918-3071</orcidid></search><sort><creationdate>20200601</creationdate><title>Mass Rigidity for Hyperbolic Manifolds</title><author>Huang, Lan-Hsuan ; Jang, Hyun Chul ; Martin, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c78ed1f1fb621266c35c9cf9d2a6b1d58a3b30727f6f2e1de10e32e04fd358fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic properties</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Manifolds</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Rigidity</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lan-Hsuan</creatorcontrib><creatorcontrib>Jang, Hyun Chul</creatorcontrib><creatorcontrib>Martin, Daniel</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lan-Hsuan</au><au>Jang, Hyun Chul</au><au>Martin, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass Rigidity for Hyperbolic Manifolds</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>376</volume><issue>3</issue><spage>2329</spage><epage>2349</epage><pages>2329-2349</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We prove the rigidity of the positive mass theorem for asymptotically hyperbolic manifolds. Namely, if the mass equality p 0 = p 1 2 + ⋯ + p n 2 holds, then the manifold is isometric to hyperbolic space. The result was previously proven for spin manifolds (Andersson and Dahl in Ann Glob Anal Geom 16(1):1–2, 1998; Chruściel and Herzlich in Pac J Math 212(2):231–264, 2003; Min-Oo in Math Ann 285(4):527–539; 1989, Wang in J Differ Geom 57(2):273–299, 2001) or under special asymptotics (Andersson et al. in Ann. Henri Poincaré 9(1):1–33, 2008).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03623-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8918-3071</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2020-06, Vol.376 (3), p.2329-2349
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2407604454
source Springer Link
subjects Asymptotic properties
Classical and Quantum Gravitation
Complex Systems
Manifolds
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Rigidity
Theoretical
title Mass Rigidity for Hyperbolic Manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20Rigidity%20for%20Hyperbolic%20Manifolds&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Huang,%20Lan-Hsuan&rft.date=2020-06-01&rft.volume=376&rft.issue=3&rft.spage=2329&rft.epage=2349&rft.pages=2329-2349&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03623-0&rft_dat=%3Cproquest_cross%3E2407604454%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-c78ed1f1fb621266c35c9cf9d2a6b1d58a3b30727f6f2e1de10e32e04fd358fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407604454&rft_id=info:pmid/&rfr_iscdi=true