Loading…

Semiclassical Estimates for Scattering on the Real Line

We prove explicit semiclassical resolvent estimates for an integrable potential on the real line. The proof is a comparatively easy case of the spherical energies method, which has been used to prove similar theorems in higher dimensions and in more complicated geometric situations. The novelty in o...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2020-06, Vol.376 (3), p.2301-2308
Main Authors: Datchev, Kiril, Shapiro, Jacob
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-fff74a11723e4e1973703abf8a106e0258eecae29ea547bffeefe2051e0699cd3
cites cdi_FETCH-LOGICAL-c319t-fff74a11723e4e1973703abf8a106e0258eecae29ea547bffeefe2051e0699cd3
container_end_page 2308
container_issue 3
container_start_page 2301
container_title Communications in mathematical physics
container_volume 376
creator Datchev, Kiril
Shapiro, Jacob
description We prove explicit semiclassical resolvent estimates for an integrable potential on the real line. The proof is a comparatively easy case of the spherical energies method, which has been used to prove similar theorems in higher dimensions and in more complicated geometric situations. The novelty in our results lies in the weakness of the assumptions on the potential.
doi_str_mv 10.1007/s00220-019-03587-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407604508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407604508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fff74a11723e4e1973703abf8a106e0258eecae29ea547bffeefe2051e0699cd3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTbM2IkdL1FVHlIlJApryzVjSJUmwXYX_D0pQWLHajb33NE9jF0iXCOAvkkAQgAHNBxkVWuOR2yGpRQcDKpjNgNA4FKhOmVnKW0BwAilZkyvadf41qXUeNcWy5SbncuUitDHYu1dzhSb7r3ouyJ_UPFMY2jVdHTOToJrE1383jl7vVu-LB746un-cXG74l6iyTyEoEuHqIWkktBoqUG6TagdgiIQVU3kHQlDrir1JgSiQAIqJFDG-Dc5Z1dT7xD7zz2lbLf9PnbjSytK0ArKCuoxJaaUj31KkYId4rgjflkEexBkJ0F2FGR_BFkcITlBaThMpPhX_Q_1DTq2Z78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407604508</pqid></control><display><type>article</type><title>Semiclassical Estimates for Scattering on the Real Line</title><source>Springer Nature</source><creator>Datchev, Kiril ; Shapiro, Jacob</creator><creatorcontrib>Datchev, Kiril ; Shapiro, Jacob</creatorcontrib><description>We prove explicit semiclassical resolvent estimates for an integrable potential on the real line. The proof is a comparatively easy case of the spherical energies method, which has been used to prove similar theorems in higher dimensions and in more complicated geometric situations. The novelty in our results lies in the weakness of the assumptions on the potential.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03587-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2020-06, Vol.376 (3), p.2301-2308</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fff74a11723e4e1973703abf8a106e0258eecae29ea547bffeefe2051e0699cd3</citedby><cites>FETCH-LOGICAL-c319t-fff74a11723e4e1973703abf8a106e0258eecae29ea547bffeefe2051e0699cd3</cites><orcidid>0000-0003-2010-9903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Datchev, Kiril</creatorcontrib><creatorcontrib>Shapiro, Jacob</creatorcontrib><title>Semiclassical Estimates for Scattering on the Real Line</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We prove explicit semiclassical resolvent estimates for an integrable potential on the real line. The proof is a comparatively easy case of the spherical energies method, which has been used to prove similar theorems in higher dimensions and in more complicated geometric situations. The novelty in our results lies in the weakness of the assumptions on the potential.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTbM2IkdL1FVHlIlJApryzVjSJUmwXYX_D0pQWLHajb33NE9jF0iXCOAvkkAQgAHNBxkVWuOR2yGpRQcDKpjNgNA4FKhOmVnKW0BwAilZkyvadf41qXUeNcWy5SbncuUitDHYu1dzhSb7r3ouyJ_UPFMY2jVdHTOToJrE1383jl7vVu-LB746un-cXG74l6iyTyEoEuHqIWkktBoqUG6TagdgiIQVU3kHQlDrir1JgSiQAIqJFDG-Dc5Z1dT7xD7zz2lbLf9PnbjSytK0ArKCuoxJaaUj31KkYId4rgjflkEexBkJ0F2FGR_BFkcITlBaThMpPhX_Q_1DTq2Z78</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Datchev, Kiril</creator><creator>Shapiro, Jacob</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2010-9903</orcidid></search><sort><creationdate>20200601</creationdate><title>Semiclassical Estimates for Scattering on the Real Line</title><author>Datchev, Kiril ; Shapiro, Jacob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fff74a11723e4e1973703abf8a106e0258eecae29ea547bffeefe2051e0699cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Datchev, Kiril</creatorcontrib><creatorcontrib>Shapiro, Jacob</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Datchev, Kiril</au><au>Shapiro, Jacob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiclassical Estimates for Scattering on the Real Line</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>376</volume><issue>3</issue><spage>2301</spage><epage>2308</epage><pages>2301-2308</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We prove explicit semiclassical resolvent estimates for an integrable potential on the real line. The proof is a comparatively easy case of the spherical energies method, which has been used to prove similar theorems in higher dimensions and in more complicated geometric situations. The novelty in our results lies in the weakness of the assumptions on the potential.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03587-1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2010-9903</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2020-06, Vol.376 (3), p.2301-2308
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2407604508
source Springer Nature
subjects Classical and Quantum Gravitation
Complex Systems
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title Semiclassical Estimates for Scattering on the Real Line
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiclassical%20Estimates%20for%20Scattering%20on%20the%20Real%20Line&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Datchev,%20Kiril&rft.date=2020-06-01&rft.volume=376&rft.issue=3&rft.spage=2301&rft.epage=2308&rft.pages=2301-2308&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03587-1&rft_dat=%3Cproquest_cross%3E2407604508%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-fff74a11723e4e1973703abf8a106e0258eecae29ea547bffeefe2051e0699cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407604508&rft_id=info:pmid/&rfr_iscdi=true