Loading…
Semiclassical Estimates for Scattering on the Real Line
We prove explicit semiclassical resolvent estimates for an integrable potential on the real line. The proof is a comparatively easy case of the spherical energies method, which has been used to prove similar theorems in higher dimensions and in more complicated geometric situations. The novelty in o...
Saved in:
Published in: | Communications in mathematical physics 2020-06, Vol.376 (3), p.2301-2308 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-fff74a11723e4e1973703abf8a106e0258eecae29ea547bffeefe2051e0699cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-fff74a11723e4e1973703abf8a106e0258eecae29ea547bffeefe2051e0699cd3 |
container_end_page | 2308 |
container_issue | 3 |
container_start_page | 2301 |
container_title | Communications in mathematical physics |
container_volume | 376 |
creator | Datchev, Kiril Shapiro, Jacob |
description | We prove explicit semiclassical resolvent estimates for an integrable potential on the real line. The proof is a comparatively easy case of the spherical energies method, which has been used to prove similar theorems in higher dimensions and in more complicated geometric situations. The novelty in our results lies in the weakness of the assumptions on the potential. |
doi_str_mv | 10.1007/s00220-019-03587-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407604508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407604508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fff74a11723e4e1973703abf8a106e0258eecae29ea547bffeefe2051e0699cd3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTbM2IkdL1FVHlIlJApryzVjSJUmwXYX_D0pQWLHajb33NE9jF0iXCOAvkkAQgAHNBxkVWuOR2yGpRQcDKpjNgNA4FKhOmVnKW0BwAilZkyvadf41qXUeNcWy5SbncuUitDHYu1dzhSb7r3ouyJ_UPFMY2jVdHTOToJrE1383jl7vVu-LB746un-cXG74l6iyTyEoEuHqIWkktBoqUG6TagdgiIQVU3kHQlDrir1JgSiQAIqJFDG-Dc5Z1dT7xD7zz2lbLf9PnbjSytK0ArKCuoxJaaUj31KkYId4rgjflkEexBkJ0F2FGR_BFkcITlBaThMpPhX_Q_1DTq2Z78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407604508</pqid></control><display><type>article</type><title>Semiclassical Estimates for Scattering on the Real Line</title><source>Springer Nature</source><creator>Datchev, Kiril ; Shapiro, Jacob</creator><creatorcontrib>Datchev, Kiril ; Shapiro, Jacob</creatorcontrib><description>We prove explicit semiclassical resolvent estimates for an integrable potential on the real line. The proof is a comparatively easy case of the spherical energies method, which has been used to prove similar theorems in higher dimensions and in more complicated geometric situations. The novelty in our results lies in the weakness of the assumptions on the potential.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03587-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2020-06, Vol.376 (3), p.2301-2308</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fff74a11723e4e1973703abf8a106e0258eecae29ea547bffeefe2051e0699cd3</citedby><cites>FETCH-LOGICAL-c319t-fff74a11723e4e1973703abf8a106e0258eecae29ea547bffeefe2051e0699cd3</cites><orcidid>0000-0003-2010-9903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Datchev, Kiril</creatorcontrib><creatorcontrib>Shapiro, Jacob</creatorcontrib><title>Semiclassical Estimates for Scattering on the Real Line</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We prove explicit semiclassical resolvent estimates for an integrable potential on the real line. The proof is a comparatively easy case of the spherical energies method, which has been used to prove similar theorems in higher dimensions and in more complicated geometric situations. The novelty in our results lies in the weakness of the assumptions on the potential.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTbM2IkdL1FVHlIlJApryzVjSJUmwXYX_D0pQWLHajb33NE9jF0iXCOAvkkAQgAHNBxkVWuOR2yGpRQcDKpjNgNA4FKhOmVnKW0BwAilZkyvadf41qXUeNcWy5SbncuUitDHYu1dzhSb7r3ouyJ_UPFMY2jVdHTOToJrE1383jl7vVu-LB746un-cXG74l6iyTyEoEuHqIWkktBoqUG6TagdgiIQVU3kHQlDrir1JgSiQAIqJFDG-Dc5Z1dT7xD7zz2lbLf9PnbjSytK0ArKCuoxJaaUj31KkYId4rgjflkEexBkJ0F2FGR_BFkcITlBaThMpPhX_Q_1DTq2Z78</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Datchev, Kiril</creator><creator>Shapiro, Jacob</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2010-9903</orcidid></search><sort><creationdate>20200601</creationdate><title>Semiclassical Estimates for Scattering on the Real Line</title><author>Datchev, Kiril ; Shapiro, Jacob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fff74a11723e4e1973703abf8a106e0258eecae29ea547bffeefe2051e0699cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Datchev, Kiril</creatorcontrib><creatorcontrib>Shapiro, Jacob</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Datchev, Kiril</au><au>Shapiro, Jacob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiclassical Estimates for Scattering on the Real Line</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>376</volume><issue>3</issue><spage>2301</spage><epage>2308</epage><pages>2301-2308</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We prove explicit semiclassical resolvent estimates for an integrable potential on the real line. The proof is a comparatively easy case of the spherical energies method, which has been used to prove similar theorems in higher dimensions and in more complicated geometric situations. The novelty in our results lies in the weakness of the assumptions on the potential.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03587-1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2010-9903</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2020-06, Vol.376 (3), p.2301-2308 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2407604508 |
source | Springer Nature |
subjects | Classical and Quantum Gravitation Complex Systems Mathematical and Computational Physics Mathematical Physics Physics Physics and Astronomy Quantum Physics Relativity Theory Theoretical |
title | Semiclassical Estimates for Scattering on the Real Line |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiclassical%20Estimates%20for%20Scattering%20on%20the%20Real%20Line&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Datchev,%20Kiril&rft.date=2020-06-01&rft.volume=376&rft.issue=3&rft.spage=2301&rft.epage=2308&rft.pages=2301-2308&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03587-1&rft_dat=%3Cproquest_cross%3E2407604508%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-fff74a11723e4e1973703abf8a106e0258eecae29ea547bffeefe2051e0699cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407604508&rft_id=info:pmid/&rfr_iscdi=true |