Loading…
Fog Computing: An Overview of Big IoT Data Analytics
A huge amount of data, generated by Internet of Things (IoT), is growing up exponentially based on nonstop operational states. Those IoT devices are generating an avalanche of information that is disruptive for predictable data processing and analytics functionality, which is perfectly handled by th...
Saved in:
Published in: | Wireless communications and mobile computing 2018-01, Vol.2018 (2018), p.1-22 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A huge amount of data, generated by Internet of Things (IoT), is growing up exponentially based on nonstop operational states. Those IoT devices are generating an avalanche of information that is disruptive for predictable data processing and analytics functionality, which is perfectly handled by the cloud before explosion growth of IoT. Fog computing structure confronts those disruptions, with powerful complement functionality of cloud framework, based on deployment of micro clouds (fog nodes) at proximity edge of data sources. Particularly big IoT data analytics by fog computing structure is on emerging phase and requires extensive research to produce more proficient knowledge and smart decisions. This survey summarizes the fog challenges and opportunities in the context of big IoT data analytics on fog networking. In addition, it emphasizes that the key characteristics in some proposed research works make the fog computing a suitable platform for new proliferating IoT devices, services, and applications. Most significant fog applications (e.g., health care monitoring, smart cities, connected vehicles, and smart grid) will be discussed here to create a well-organized green computing paradigm to support the next generation of IoT applications. |
---|---|
ISSN: | 1530-8669 1530-8677 |
DOI: | 10.1155/2018/7157192 |