Loading…

Optimization of Cell Size in Ultra-Dense Networks with Multiattribute User Types and Different Frequency Bands

Ultra-dense cellular networks (UDNs) represent the trend for 5G networks in dense urban environments. With the aim of exploring the optimal extent of network densification under different performance requirements and the trade-off between the network capacity and deployment cost in UDNs, a multiple-...

Full description

Saved in:
Bibliographic Details
Published in:Wireless communications and mobile computing 2018-01, Vol.2018 (2018), p.1-10
Main Authors: Wei, Yiqiao, Hwang, Seung-Hoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultra-dense cellular networks (UDNs) represent the trend for 5G networks in dense urban environments. With the aim of exploring the optimal extent of network densification under different performance requirements and the trade-off between the network capacity and deployment cost in UDNs, a multiple-objective optimization model is proposed. This novel optimization design consists of a multiattribute user type in which users are grouped based on their propagation conditions and an infinitesimal dividing modeling method termed the ring method for network capacity dimensioning. The optimal cell size is estimated to maximize the total network capacity and minimize the deployment cost under different levels of user capacity demand. Additionally, the corresponding total network capacity and the required number of base stations are presented. Furthermore, two conventional frequency bands, 800 MHz and 1.8 GHz, and two new bands, 3.5 GHz and mmWave 28 GHz, are considered to investigate their feasibility and the potential of higher frequency bands in the 5G network.
ISSN:1530-8669
1530-8677
DOI:10.1155/2018/8319749