Loading…

FPGA Implementation of UFMC Based Baseband Transmitter: Case Study for LTE 10MHz Channelization

Universal filtered multicarrier (UFMC) is a low complexity promising waveform that provides quasi-orthogonal property among subcarriers. In addition, it can achieve much better out-of-band emission performance than orthogonal frequency division multiplexing (OFDM) system. Authors have proposed a har...

Full description

Saved in:
Bibliographic Details
Published in:Wireless communications and mobile computing 2018-01, Vol.2018 (2018), p.1-12
Main Authors: Imran, Muhammad Ali, Zhang, Lei, Majid, Javaria, Jafri, Atif Raza, Najam-Ul-Islam, Muhammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Universal filtered multicarrier (UFMC) is a low complexity promising waveform that provides quasi-orthogonal property among subcarriers. In addition, it can achieve much better out-of-band emission performance than orthogonal frequency division multiplexing (OFDM) system. Authors have proposed a hardware platform to implement a UFMC transmitter in this paper. Highly reduced complexity schemes for IFFT, filtering, and spectrum shifting are realized on actual hardware. This helps to achieve overall architecture of the transmitter at the cost of minimal FPGA resource usage. Hence, the overall design uses only 1038 slice registers, 1154 slice LUTs, and 64 multipliers of Xilinx Virtex-7 XC7VX330t device. A throughput of 773.5 Msamples/sec at an operational frequency of 364 MHz is achieved. This throughput is adequate for processing 50 Physical Resource Blocks (PRB) of LTE 10 MHz channelization in required time. The presented architecture provides a latency of only 2% of one LTE 10MHz channelization symbol due to the implementation of pipelining at different levels. Although the presented hardware design in its current form meets LTE 10MHz channelization throughput requirements, further increase in throughput is possible due to the scalable nature of the architecture. To the best of our knowledge, this work is first ever FPGA solution for UFMC transmitter presented in the literature.
ISSN:1530-8669
1530-8677
DOI:10.1155/2018/2139794