Loading…
One-to-Many Relationship Based Kullback Leibler Divergence against Malicious Users in Cooperative Spectrum Sensing
The centralized cooperative spectrum sensing (CSS) allows unlicensed users to share their local sensing observations with the fusion center (FC) for sensing the licensed user spectrum. Although collaboration leads to better sensing, malicious user (MU) participation in CSS results in performance deg...
Saved in:
Published in: | Wireless communications and mobile computing 2018-01, Vol.2018 (2018), p.1-14 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-f320c4ffec467e16e6f0273c44e025606b23e3135536fb89ff66af544c9b048d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-f320c4ffec467e16e6f0273c44e025606b23e3135536fb89ff66af544c9b048d3 |
container_end_page | 14 |
container_issue | 2018 |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2018 |
creator | Kamran, Muhammad Akbar, Sadiq Qureshi, Ijaz Mansoor Gul, Noor Rasool, Imtiaz |
description | The centralized cooperative spectrum sensing (CSS) allows unlicensed users to share their local sensing observations with the fusion center (FC) for sensing the licensed user spectrum. Although collaboration leads to better sensing, malicious user (MU) participation in CSS results in performance degradation. The proposed technique is based on Kullback Leibler Divergence (KLD) algorithm for mitigating the MUs attack in CSS. The secondary users (SUs) inform FC about the primary user (PU) spectrum availability by sending received energy statistics. Unlike the previous KLD algorithm where the individual SU sensing information is utilized for measuring the KLD, in this work MUs are identified and separated based on the individual SU decision and the average sensing statistics received from all other users. The proposed KLD assigns lower weights to the sensing information of MUs, while the normal SUs information receives higher weights. The proposed method has been tested in the presence of always yes, always no, opposite, and random opposite MUs. Simulations confirm that the proposed KLD scheme has surpassed the existing soft combination schemes in estimating the PU activity. |
doi_str_mv | 10.1155/2018/3153915 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407628027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407628027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-f320c4ffec467e16e6f0273c44e025606b23e3135536fb89ff66af544c9b048d3</originalsourceid><addsrcrecordid>eNqF0DtPwzAUBWALgUQpbMzIEiOE-hE7yQjlKVpVonSOHPe6dUmdYCdF_fekKoKR6Z7h07nSQeickhtKhRgwQtMBp4JnVBygXhdIlMokOfzNMjtGJyGsCCGcMNpDfuIgaqporNwWv0GpGlu5sLQ1vlMB5vi1LctC6Q88AluU4PG93YBfgNOA1UJZFxo8VqXVtmoDngXwAVuHh1VVg-_KNoCnNejGt2s8BResW5yiI6PKAGc_t49mjw_vw-doNHl6Gd6OIs0laSLDGdGxMaBjmQCVIA1hCddxDIQJSWTBOHDKheDSFGlmjJTKiDjWWUHidM776HLfW_vqs4XQ5Kuq9a57mbOYJJKlu74-ut4r7asQPJi89nat_DanJN-tmu9WzX9W7fjVni-tm6sv-5--2GvoDBj1pxkVmZD8GyfAgQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407628027</pqid></control><display><type>article</type><title>One-to-Many Relationship Based Kullback Leibler Divergence against Malicious Users in Cooperative Spectrum Sensing</title><source>Access via ProQuest (Open Access)</source><source>Wiley Online Library Open Access</source><creator>Kamran, Muhammad ; Akbar, Sadiq ; Qureshi, Ijaz Mansoor ; Gul, Noor ; Rasool, Imtiaz</creator><contributor>Lee, Sungchang ; Sungchang Lee</contributor><creatorcontrib>Kamran, Muhammad ; Akbar, Sadiq ; Qureshi, Ijaz Mansoor ; Gul, Noor ; Rasool, Imtiaz ; Lee, Sungchang ; Sungchang Lee</creatorcontrib><description>The centralized cooperative spectrum sensing (CSS) allows unlicensed users to share their local sensing observations with the fusion center (FC) for sensing the licensed user spectrum. Although collaboration leads to better sensing, malicious user (MU) participation in CSS results in performance degradation. The proposed technique is based on Kullback Leibler Divergence (KLD) algorithm for mitigating the MUs attack in CSS. The secondary users (SUs) inform FC about the primary user (PU) spectrum availability by sending received energy statistics. Unlike the previous KLD algorithm where the individual SU sensing information is utilized for measuring the KLD, in this work MUs are identified and separated based on the individual SU decision and the average sensing statistics received from all other users. The proposed KLD assigns lower weights to the sensing information of MUs, while the normal SUs information receives higher weights. The proposed method has been tested in the presence of always yes, always no, opposite, and random opposite MUs. Simulations confirm that the proposed KLD scheme has surpassed the existing soft combination schemes in estimating the PU activity.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2018/3153915</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Computer simulation ; Detection ; Energy ; False alarms ; Hypotheses ; Licenses ; Performance degradation ; Probability ; Receivers & amplifiers ; Sensors ; Spectrum allocation ; Transmitters ; Wireless networks</subject><ispartof>Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-14</ispartof><rights>Copyright © 2018 Noor Gul et al.</rights><rights>Copyright © 2018 Noor Gul et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-f320c4ffec467e16e6f0273c44e025606b23e3135536fb89ff66af544c9b048d3</citedby><cites>FETCH-LOGICAL-c360t-f320c4ffec467e16e6f0273c44e025606b23e3135536fb89ff66af544c9b048d3</cites><orcidid>0000-0003-3740-2946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2407628027/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2407628027?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Lee, Sungchang</contributor><contributor>Sungchang Lee</contributor><creatorcontrib>Kamran, Muhammad</creatorcontrib><creatorcontrib>Akbar, Sadiq</creatorcontrib><creatorcontrib>Qureshi, Ijaz Mansoor</creatorcontrib><creatorcontrib>Gul, Noor</creatorcontrib><creatorcontrib>Rasool, Imtiaz</creatorcontrib><title>One-to-Many Relationship Based Kullback Leibler Divergence against Malicious Users in Cooperative Spectrum Sensing</title><title>Wireless communications and mobile computing</title><description>The centralized cooperative spectrum sensing (CSS) allows unlicensed users to share their local sensing observations with the fusion center (FC) for sensing the licensed user spectrum. Although collaboration leads to better sensing, malicious user (MU) participation in CSS results in performance degradation. The proposed technique is based on Kullback Leibler Divergence (KLD) algorithm for mitigating the MUs attack in CSS. The secondary users (SUs) inform FC about the primary user (PU) spectrum availability by sending received energy statistics. Unlike the previous KLD algorithm where the individual SU sensing information is utilized for measuring the KLD, in this work MUs are identified and separated based on the individual SU decision and the average sensing statistics received from all other users. The proposed KLD assigns lower weights to the sensing information of MUs, while the normal SUs information receives higher weights. The proposed method has been tested in the presence of always yes, always no, opposite, and random opposite MUs. Simulations confirm that the proposed KLD scheme has surpassed the existing soft combination schemes in estimating the PU activity.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Detection</subject><subject>Energy</subject><subject>False alarms</subject><subject>Hypotheses</subject><subject>Licenses</subject><subject>Performance degradation</subject><subject>Probability</subject><subject>Receivers & amplifiers</subject><subject>Sensors</subject><subject>Spectrum allocation</subject><subject>Transmitters</subject><subject>Wireless networks</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0DtPwzAUBWALgUQpbMzIEiOE-hE7yQjlKVpVonSOHPe6dUmdYCdF_fekKoKR6Z7h07nSQeickhtKhRgwQtMBp4JnVBygXhdIlMokOfzNMjtGJyGsCCGcMNpDfuIgaqporNwWv0GpGlu5sLQ1vlMB5vi1LctC6Q88AluU4PG93YBfgNOA1UJZFxo8VqXVtmoDngXwAVuHh1VVg-_KNoCnNejGt2s8BResW5yiI6PKAGc_t49mjw_vw-doNHl6Gd6OIs0laSLDGdGxMaBjmQCVIA1hCddxDIQJSWTBOHDKheDSFGlmjJTKiDjWWUHidM776HLfW_vqs4XQ5Kuq9a57mbOYJJKlu74-ut4r7asQPJi89nat_DanJN-tmu9WzX9W7fjVni-tm6sv-5--2GvoDBj1pxkVmZD8GyfAgQI</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Kamran, Muhammad</creator><creator>Akbar, Sadiq</creator><creator>Qureshi, Ijaz Mansoor</creator><creator>Gul, Noor</creator><creator>Rasool, Imtiaz</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3740-2946</orcidid></search><sort><creationdate>20180101</creationdate><title>One-to-Many Relationship Based Kullback Leibler Divergence against Malicious Users in Cooperative Spectrum Sensing</title><author>Kamran, Muhammad ; Akbar, Sadiq ; Qureshi, Ijaz Mansoor ; Gul, Noor ; Rasool, Imtiaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-f320c4ffec467e16e6f0273c44e025606b23e3135536fb89ff66af544c9b048d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Detection</topic><topic>Energy</topic><topic>False alarms</topic><topic>Hypotheses</topic><topic>Licenses</topic><topic>Performance degradation</topic><topic>Probability</topic><topic>Receivers & amplifiers</topic><topic>Sensors</topic><topic>Spectrum allocation</topic><topic>Transmitters</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamran, Muhammad</creatorcontrib><creatorcontrib>Akbar, Sadiq</creatorcontrib><creatorcontrib>Qureshi, Ijaz Mansoor</creatorcontrib><creatorcontrib>Gul, Noor</creatorcontrib><creatorcontrib>Rasool, Imtiaz</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamran, Muhammad</au><au>Akbar, Sadiq</au><au>Qureshi, Ijaz Mansoor</au><au>Gul, Noor</au><au>Rasool, Imtiaz</au><au>Lee, Sungchang</au><au>Sungchang Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-to-Many Relationship Based Kullback Leibler Divergence against Malicious Users in Cooperative Spectrum Sensing</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>The centralized cooperative spectrum sensing (CSS) allows unlicensed users to share their local sensing observations with the fusion center (FC) for sensing the licensed user spectrum. Although collaboration leads to better sensing, malicious user (MU) participation in CSS results in performance degradation. The proposed technique is based on Kullback Leibler Divergence (KLD) algorithm for mitigating the MUs attack in CSS. The secondary users (SUs) inform FC about the primary user (PU) spectrum availability by sending received energy statistics. Unlike the previous KLD algorithm where the individual SU sensing information is utilized for measuring the KLD, in this work MUs are identified and separated based on the individual SU decision and the average sensing statistics received from all other users. The proposed KLD assigns lower weights to the sensing information of MUs, while the normal SUs information receives higher weights. The proposed method has been tested in the presence of always yes, always no, opposite, and random opposite MUs. Simulations confirm that the proposed KLD scheme has surpassed the existing soft combination schemes in estimating the PU activity.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/3153915</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3740-2946</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-14 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2407628027 |
source | Access via ProQuest (Open Access); Wiley Online Library Open Access |
subjects | Algorithms Computer simulation Detection Energy False alarms Hypotheses Licenses Performance degradation Probability Receivers & amplifiers Sensors Spectrum allocation Transmitters Wireless networks |
title | One-to-Many Relationship Based Kullback Leibler Divergence against Malicious Users in Cooperative Spectrum Sensing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-to-Many%20Relationship%20Based%20Kullback%20Leibler%20Divergence%20against%20Malicious%20Users%20in%20Cooperative%20Spectrum%20Sensing&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Kamran,%20Muhammad&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2018/3153915&rft_dat=%3Cproquest_cross%3E2407628027%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-f320c4ffec467e16e6f0273c44e025606b23e3135536fb89ff66af544c9b048d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407628027&rft_id=info:pmid/&rfr_iscdi=true |