Loading…

One-to-Many Relationship Based Kullback Leibler Divergence against Malicious Users in Cooperative Spectrum Sensing

The centralized cooperative spectrum sensing (CSS) allows unlicensed users to share their local sensing observations with the fusion center (FC) for sensing the licensed user spectrum. Although collaboration leads to better sensing, malicious user (MU) participation in CSS results in performance deg...

Full description

Saved in:
Bibliographic Details
Published in:Wireless communications and mobile computing 2018-01, Vol.2018 (2018), p.1-14
Main Authors: Kamran, Muhammad, Akbar, Sadiq, Qureshi, Ijaz Mansoor, Gul, Noor, Rasool, Imtiaz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-f320c4ffec467e16e6f0273c44e025606b23e3135536fb89ff66af544c9b048d3
cites cdi_FETCH-LOGICAL-c360t-f320c4ffec467e16e6f0273c44e025606b23e3135536fb89ff66af544c9b048d3
container_end_page 14
container_issue 2018
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2018
creator Kamran, Muhammad
Akbar, Sadiq
Qureshi, Ijaz Mansoor
Gul, Noor
Rasool, Imtiaz
description The centralized cooperative spectrum sensing (CSS) allows unlicensed users to share their local sensing observations with the fusion center (FC) for sensing the licensed user spectrum. Although collaboration leads to better sensing, malicious user (MU) participation in CSS results in performance degradation. The proposed technique is based on Kullback Leibler Divergence (KLD) algorithm for mitigating the MUs attack in CSS. The secondary users (SUs) inform FC about the primary user (PU) spectrum availability by sending received energy statistics. Unlike the previous KLD algorithm where the individual SU sensing information is utilized for measuring the KLD, in this work MUs are identified and separated based on the individual SU decision and the average sensing statistics received from all other users. The proposed KLD assigns lower weights to the sensing information of MUs, while the normal SUs information receives higher weights. The proposed method has been tested in the presence of always yes, always no, opposite, and random opposite MUs. Simulations confirm that the proposed KLD scheme has surpassed the existing soft combination schemes in estimating the PU activity.
doi_str_mv 10.1155/2018/3153915
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407628027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407628027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-f320c4ffec467e16e6f0273c44e025606b23e3135536fb89ff66af544c9b048d3</originalsourceid><addsrcrecordid>eNqF0DtPwzAUBWALgUQpbMzIEiOE-hE7yQjlKVpVonSOHPe6dUmdYCdF_fekKoKR6Z7h07nSQeickhtKhRgwQtMBp4JnVBygXhdIlMokOfzNMjtGJyGsCCGcMNpDfuIgaqporNwWv0GpGlu5sLQ1vlMB5vi1LctC6Q88AluU4PG93YBfgNOA1UJZFxo8VqXVtmoDngXwAVuHh1VVg-_KNoCnNejGt2s8BResW5yiI6PKAGc_t49mjw_vw-doNHl6Gd6OIs0laSLDGdGxMaBjmQCVIA1hCddxDIQJSWTBOHDKheDSFGlmjJTKiDjWWUHidM776HLfW_vqs4XQ5Kuq9a57mbOYJJKlu74-ut4r7asQPJi89nat_DanJN-tmu9WzX9W7fjVni-tm6sv-5--2GvoDBj1pxkVmZD8GyfAgQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407628027</pqid></control><display><type>article</type><title>One-to-Many Relationship Based Kullback Leibler Divergence against Malicious Users in Cooperative Spectrum Sensing</title><source>Access via ProQuest (Open Access)</source><source>Wiley Online Library Open Access</source><creator>Kamran, Muhammad ; Akbar, Sadiq ; Qureshi, Ijaz Mansoor ; Gul, Noor ; Rasool, Imtiaz</creator><contributor>Lee, Sungchang ; Sungchang Lee</contributor><creatorcontrib>Kamran, Muhammad ; Akbar, Sadiq ; Qureshi, Ijaz Mansoor ; Gul, Noor ; Rasool, Imtiaz ; Lee, Sungchang ; Sungchang Lee</creatorcontrib><description>The centralized cooperative spectrum sensing (CSS) allows unlicensed users to share their local sensing observations with the fusion center (FC) for sensing the licensed user spectrum. Although collaboration leads to better sensing, malicious user (MU) participation in CSS results in performance degradation. The proposed technique is based on Kullback Leibler Divergence (KLD) algorithm for mitigating the MUs attack in CSS. The secondary users (SUs) inform FC about the primary user (PU) spectrum availability by sending received energy statistics. Unlike the previous KLD algorithm where the individual SU sensing information is utilized for measuring the KLD, in this work MUs are identified and separated based on the individual SU decision and the average sensing statistics received from all other users. The proposed KLD assigns lower weights to the sensing information of MUs, while the normal SUs information receives higher weights. The proposed method has been tested in the presence of always yes, always no, opposite, and random opposite MUs. Simulations confirm that the proposed KLD scheme has surpassed the existing soft combination schemes in estimating the PU activity.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2018/3153915</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Computer simulation ; Detection ; Energy ; False alarms ; Hypotheses ; Licenses ; Performance degradation ; Probability ; Receivers &amp; amplifiers ; Sensors ; Spectrum allocation ; Transmitters ; Wireless networks</subject><ispartof>Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-14</ispartof><rights>Copyright © 2018 Noor Gul et al.</rights><rights>Copyright © 2018 Noor Gul et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-f320c4ffec467e16e6f0273c44e025606b23e3135536fb89ff66af544c9b048d3</citedby><cites>FETCH-LOGICAL-c360t-f320c4ffec467e16e6f0273c44e025606b23e3135536fb89ff66af544c9b048d3</cites><orcidid>0000-0003-3740-2946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2407628027/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2407628027?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Lee, Sungchang</contributor><contributor>Sungchang Lee</contributor><creatorcontrib>Kamran, Muhammad</creatorcontrib><creatorcontrib>Akbar, Sadiq</creatorcontrib><creatorcontrib>Qureshi, Ijaz Mansoor</creatorcontrib><creatorcontrib>Gul, Noor</creatorcontrib><creatorcontrib>Rasool, Imtiaz</creatorcontrib><title>One-to-Many Relationship Based Kullback Leibler Divergence against Malicious Users in Cooperative Spectrum Sensing</title><title>Wireless communications and mobile computing</title><description>The centralized cooperative spectrum sensing (CSS) allows unlicensed users to share their local sensing observations with the fusion center (FC) for sensing the licensed user spectrum. Although collaboration leads to better sensing, malicious user (MU) participation in CSS results in performance degradation. The proposed technique is based on Kullback Leibler Divergence (KLD) algorithm for mitigating the MUs attack in CSS. The secondary users (SUs) inform FC about the primary user (PU) spectrum availability by sending received energy statistics. Unlike the previous KLD algorithm where the individual SU sensing information is utilized for measuring the KLD, in this work MUs are identified and separated based on the individual SU decision and the average sensing statistics received from all other users. The proposed KLD assigns lower weights to the sensing information of MUs, while the normal SUs information receives higher weights. The proposed method has been tested in the presence of always yes, always no, opposite, and random opposite MUs. Simulations confirm that the proposed KLD scheme has surpassed the existing soft combination schemes in estimating the PU activity.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Detection</subject><subject>Energy</subject><subject>False alarms</subject><subject>Hypotheses</subject><subject>Licenses</subject><subject>Performance degradation</subject><subject>Probability</subject><subject>Receivers &amp; amplifiers</subject><subject>Sensors</subject><subject>Spectrum allocation</subject><subject>Transmitters</subject><subject>Wireless networks</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0DtPwzAUBWALgUQpbMzIEiOE-hE7yQjlKVpVonSOHPe6dUmdYCdF_fekKoKR6Z7h07nSQeickhtKhRgwQtMBp4JnVBygXhdIlMokOfzNMjtGJyGsCCGcMNpDfuIgaqporNwWv0GpGlu5sLQ1vlMB5vi1LctC6Q88AluU4PG93YBfgNOA1UJZFxo8VqXVtmoDngXwAVuHh1VVg-_KNoCnNejGt2s8BResW5yiI6PKAGc_t49mjw_vw-doNHl6Gd6OIs0laSLDGdGxMaBjmQCVIA1hCddxDIQJSWTBOHDKheDSFGlmjJTKiDjWWUHidM776HLfW_vqs4XQ5Kuq9a57mbOYJJKlu74-ut4r7asQPJi89nat_DanJN-tmu9WzX9W7fjVni-tm6sv-5--2GvoDBj1pxkVmZD8GyfAgQI</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Kamran, Muhammad</creator><creator>Akbar, Sadiq</creator><creator>Qureshi, Ijaz Mansoor</creator><creator>Gul, Noor</creator><creator>Rasool, Imtiaz</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3740-2946</orcidid></search><sort><creationdate>20180101</creationdate><title>One-to-Many Relationship Based Kullback Leibler Divergence against Malicious Users in Cooperative Spectrum Sensing</title><author>Kamran, Muhammad ; Akbar, Sadiq ; Qureshi, Ijaz Mansoor ; Gul, Noor ; Rasool, Imtiaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-f320c4ffec467e16e6f0273c44e025606b23e3135536fb89ff66af544c9b048d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Detection</topic><topic>Energy</topic><topic>False alarms</topic><topic>Hypotheses</topic><topic>Licenses</topic><topic>Performance degradation</topic><topic>Probability</topic><topic>Receivers &amp; amplifiers</topic><topic>Sensors</topic><topic>Spectrum allocation</topic><topic>Transmitters</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamran, Muhammad</creatorcontrib><creatorcontrib>Akbar, Sadiq</creatorcontrib><creatorcontrib>Qureshi, Ijaz Mansoor</creatorcontrib><creatorcontrib>Gul, Noor</creatorcontrib><creatorcontrib>Rasool, Imtiaz</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamran, Muhammad</au><au>Akbar, Sadiq</au><au>Qureshi, Ijaz Mansoor</au><au>Gul, Noor</au><au>Rasool, Imtiaz</au><au>Lee, Sungchang</au><au>Sungchang Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-to-Many Relationship Based Kullback Leibler Divergence against Malicious Users in Cooperative Spectrum Sensing</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>The centralized cooperative spectrum sensing (CSS) allows unlicensed users to share their local sensing observations with the fusion center (FC) for sensing the licensed user spectrum. Although collaboration leads to better sensing, malicious user (MU) participation in CSS results in performance degradation. The proposed technique is based on Kullback Leibler Divergence (KLD) algorithm for mitigating the MUs attack in CSS. The secondary users (SUs) inform FC about the primary user (PU) spectrum availability by sending received energy statistics. Unlike the previous KLD algorithm where the individual SU sensing information is utilized for measuring the KLD, in this work MUs are identified and separated based on the individual SU decision and the average sensing statistics received from all other users. The proposed KLD assigns lower weights to the sensing information of MUs, while the normal SUs information receives higher weights. The proposed method has been tested in the presence of always yes, always no, opposite, and random opposite MUs. Simulations confirm that the proposed KLD scheme has surpassed the existing soft combination schemes in estimating the PU activity.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/3153915</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3740-2946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-14
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2407628027
source Access via ProQuest (Open Access); Wiley Online Library Open Access
subjects Algorithms
Computer simulation
Detection
Energy
False alarms
Hypotheses
Licenses
Performance degradation
Probability
Receivers & amplifiers
Sensors
Spectrum allocation
Transmitters
Wireless networks
title One-to-Many Relationship Based Kullback Leibler Divergence against Malicious Users in Cooperative Spectrum Sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-to-Many%20Relationship%20Based%20Kullback%20Leibler%20Divergence%20against%20Malicious%20Users%20in%20Cooperative%20Spectrum%20Sensing&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Kamran,%20Muhammad&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2018/3153915&rft_dat=%3Cproquest_cross%3E2407628027%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-f320c4ffec467e16e6f0273c44e025606b23e3135536fb89ff66af544c9b048d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407628027&rft_id=info:pmid/&rfr_iscdi=true