Loading…
Median-Difference Correntropy for DOA under the Impulsive Noise Environment
The source localization using direction of arrival (DOA) of target is an important research in the field of Internet of Things (IoTs). However, correntropy suffers the performance degradation for direction of arrival when the two signals contain the similar impulsive noise, which cannot be detected...
Saved in:
Published in: | Wireless communications and mobile computing 2019, Vol.2019 (2019), p.1-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The source localization using direction of arrival (DOA) of target is an important research in the field of Internet of Things (IoTs). However, correntropy suffers the performance degradation for direction of arrival when the two signals contain the similar impulsive noise, which cannot be detected by the difference between two signals. This paper proposes a new correntropy, called the median-difference correntropy, which combines the generalized correntropy and the median difference. The median difference is defined as the deviation between the sampling value and the median of the signal, and it intuitively reflects the abnormality of impulsive noise. Then, the median difference is combined with the generalized correntropy to form a new weighting factor that can effectively suppress the amplitude level of impulsive noise. To improve the robustness of the algorithm, an adaptive kernel size is also integrated into the weighting factor to obtain the optimal local feature. The influence of adaptive kernel sizes on the proposed algorithm is simulated, and the comparison between three typical direction-of-arrival estimation algorithms is conducted. The results show that the accuracy of the median-difference correntropy is significantly superior to the correntropy-based correlation and the phased fractional lower-order moment for a wide range of alpha-stable distribution noise environments. |
---|---|
ISSN: | 1530-8669 1530-8677 |
DOI: | 10.1155/2019/8107176 |