Loading…
Performance Evaluation of IEEE 802.11ad in Evolving Wi-Fi Networks
The IEEE 802.11ad technology, which allows wireless devices to communicate in the unlicensed 60 GHz ISM band, promisingly provides multi-Gbps data rates for bandwidth-intensive applications. After years of research and development, we are now observing an increasing number of commodity IEEE 802.11ad...
Saved in:
Published in: | Wireless communications and mobile computing 2019-01, Vol.2019 (2019), p.1-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The IEEE 802.11ad technology, which allows wireless devices to communicate in the unlicensed 60 GHz ISM band, promisingly provides multi-Gbps data rates for bandwidth-intensive applications. After years of research and development, we are now observing an increasing number of commodity IEEE 802.11ad radios that motivate researchers to exploit the IEEE 801.11ad capability for applications. This work first conducts an empirical study on the IEEE 802.11ad performance. In particular, we characterize the performance of IEEE 802.11ad links considering the variation of network parameters and interference. Secondly, we investigate the possibility of introducing IEEE 802.11ad to an evolving Wi-Fi network. The evaluation results show that our off-the-shelf IEEE 802.11ad hardware can achieve the Gbps level throughput of the transmission control protocol (TCP) and user datagram protocol (UDP). However, the evolvement is not trivial since the hardware can not well maintain the 60 GHz link. The main reason is lacking the fast switchover function between an IEEE 802.11ad and a legacy Wi-Fi link. We then seek the potential of multipath TCP (MPTCP) for the expected switchover. The default MPTCP, which enables data transmissions on both the IEEE 802.11ad and Wi-Fi links, is harmful to the IEEE 802.11ad throughput. Meanwhile, the backup mode of MPTCP, in which the Wi-Fi link acts as a backup for IEEE 802.11ad one, can maintain the comparable performance. Therefore, we propose to adopt MPTCP with the backup mode in the evolving Wi-Fi networks. The efficiency of MPTCP-based switchover is confirmed by conducting real experiments. |
---|---|
ISSN: | 1530-8669 1530-8677 |
DOI: | 10.1155/2019/4089365 |