Loading…
Fabrication of Illumination-Dependent Cu/p-Si Schottky Barrier Diodes by Sandwiching MoO3 Nanoplates as an Interfacial Layer via JNSP Technique
Highly oriented ultrathin MoO 3 nanoplate thin films have been synthesized on a large scale using a low-cost spray pyrolysis technique at different substrate temperatures (350°C, 400°C, 450°C, and 500°C). High-quality single-phase orthorhombic α-MoO 3 nanoplate film was observed by x-ray diffraction...
Saved in:
Published in: | Journal of electronic materials 2020-07, Vol.49 (7), p.4249-4264 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-9a2daf9d273aaca29c8bc17f2e3dda3bf2004c9b3edb9d392a8f3d0f5953610f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-9a2daf9d273aaca29c8bc17f2e3dda3bf2004c9b3edb9d392a8f3d0f5953610f3 |
container_end_page | 4264 |
container_issue | 7 |
container_start_page | 4249 |
container_title | Journal of electronic materials |
container_volume | 49 |
creator | Vivek, P. Chandrasekaran, J. Marnadu, R. Maruthamuthu, S. |
description | Highly oriented ultrathin MoO
3
nanoplate thin films have been synthesized on a large scale using a low-cost spray pyrolysis technique at different substrate temperatures (350°C, 400°C, 450°C, and 500°C). High-quality single-phase orthorhombic α-MoO
3
nanoplate film was observed by x-ray diffraction analysis. The surface morphology of the coated films was analyzed by field-emission scanning electron microscopy, revealing two different surface structures, viz. nanorods and nanoplates. Under atomic force microscopy, the surface roughness of the films was found to decrease with increasing substrate temperature. The optical properties of the α-MoO
3
nanoplate thin films were analyzed by ultraviolet–visible and photoluminescence spectroscopy. The optical bandgap varied from 2.8 eV to 3.2 eV, recording a red-shift in the emission, with increasing substrate temperature from 350°C to 500°C. The electrical conductivity was also found to increase linearly with increasing substrate temperature. Various photodiode parameters such as ideality factor (
n
), barrier hight (Ф
B
), photo sensitivity (
P
S
), resistivity (
R
), quantum efficiency (QE) and detectivity (
D
*) were calculated for different light intensities from 0 mW/cm
2
to 120 mW/cm
2
based on the
I
–
V
characteristic. The diode fabricated at 500°C showed a remarkably high photosensitivity and specific detectivity of 610.51% and 1.149 × 10
11
Jones when measured at 120 mW/cm
2
. |
doi_str_mv | 10.1007/s11664-020-08137-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407710933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407710933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9a2daf9d273aaca29c8bc17f2e3dda3bf2004c9b3edb9d392a8f3d0f5953610f3</originalsourceid><addsrcrecordid>eNp9kM1qGzEQx0VpoW6SF-hJ0LMaSeP1ro6t0yQublJwAr2JWX3ESjfSVlq3-CnyylXiQm-BgWGY_wf8CHkv-EfBeXtahFgs5oxLzngnoGXwisxEMwcmusWP12TGYSFYI6F5S96Vcs-5aEQnZuTxHPscDE4hRZo8XQ3D7iHE55ududFF6-JEl7vTkW0C3Zhtmqafe_oZcw4u07OQrCu039MNRvsnmG2Id_RbugZ6hTGNA071jXUiXcXJZY8m4EDXuK_u3wHp16vNd3rjzDaGXzt3TN54HIo7-bePyO35l5vlJVtfX6yWn9bMgFATUygtemVlC4gGpTJdb0TrpQNrEXovOZ8b1YOzvbKgJHYeLPeNaioI7uGIfDjkjjnV2jLp-7TLsVZqOedtK7gCqCp5UJmcSsnO6zGHB8x7Lbh-Aq8P4HUFr5_B6ycTHEyliuOdy_-jX3D9BUaih9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407710933</pqid></control><display><type>article</type><title>Fabrication of Illumination-Dependent Cu/p-Si Schottky Barrier Diodes by Sandwiching MoO3 Nanoplates as an Interfacial Layer via JNSP Technique</title><source>Springer Link</source><creator>Vivek, P. ; Chandrasekaran, J. ; Marnadu, R. ; Maruthamuthu, S.</creator><creatorcontrib>Vivek, P. ; Chandrasekaran, J. ; Marnadu, R. ; Maruthamuthu, S.</creatorcontrib><description>Highly oriented ultrathin MoO
3
nanoplate thin films have been synthesized on a large scale using a low-cost spray pyrolysis technique at different substrate temperatures (350°C, 400°C, 450°C, and 500°C). High-quality single-phase orthorhombic α-MoO
3
nanoplate film was observed by x-ray diffraction analysis. The surface morphology of the coated films was analyzed by field-emission scanning electron microscopy, revealing two different surface structures, viz. nanorods and nanoplates. Under atomic force microscopy, the surface roughness of the films was found to decrease with increasing substrate temperature. The optical properties of the α-MoO
3
nanoplate thin films were analyzed by ultraviolet–visible and photoluminescence spectroscopy. The optical bandgap varied from 2.8 eV to 3.2 eV, recording a red-shift in the emission, with increasing substrate temperature from 350°C to 500°C. The electrical conductivity was also found to increase linearly with increasing substrate temperature. Various photodiode parameters such as ideality factor (
n
), barrier hight (Ф
B
), photo sensitivity (
P
S
), resistivity (
R
), quantum efficiency (QE) and detectivity (
D
*) were calculated for different light intensities from 0 mW/cm
2
to 120 mW/cm
2
based on the
I
–
V
characteristic. The diode fabricated at 500°C showed a remarkably high photosensitivity and specific detectivity of 610.51% and 1.149 × 10
11
Jones when measured at 120 mW/cm
2
.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08137-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Atomic force microscopy ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Doppler effect ; Electrical resistivity ; Electronics and Microelectronics ; Emission analysis ; Instrumentation ; Luminous intensity ; Materials Science ; Microscopy ; Molybdenum oxides ; Molybdenum trioxide ; Morphology ; Nanorods ; Optical and Electronic Materials ; Optical properties ; Parameter sensitivity ; Photodiodes ; Photoluminescence ; Photosensitivity ; Quantum efficiency ; Red shift ; Schottky diodes ; Solid State Physics ; Spray pyrolysis ; Substrates ; Surface roughness ; Thin films</subject><ispartof>Journal of electronic materials, 2020-07, Vol.49 (7), p.4249-4264</ispartof><rights>The Minerals, Metals & Materials Society 2020</rights><rights>The Minerals, Metals & Materials Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9a2daf9d273aaca29c8bc17f2e3dda3bf2004c9b3edb9d392a8f3d0f5953610f3</citedby><cites>FETCH-LOGICAL-c319t-9a2daf9d273aaca29c8bc17f2e3dda3bf2004c9b3edb9d392a8f3d0f5953610f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Vivek, P.</creatorcontrib><creatorcontrib>Chandrasekaran, J.</creatorcontrib><creatorcontrib>Marnadu, R.</creatorcontrib><creatorcontrib>Maruthamuthu, S.</creatorcontrib><title>Fabrication of Illumination-Dependent Cu/p-Si Schottky Barrier Diodes by Sandwiching MoO3 Nanoplates as an Interfacial Layer via JNSP Technique</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Highly oriented ultrathin MoO
3
nanoplate thin films have been synthesized on a large scale using a low-cost spray pyrolysis technique at different substrate temperatures (350°C, 400°C, 450°C, and 500°C). High-quality single-phase orthorhombic α-MoO
3
nanoplate film was observed by x-ray diffraction analysis. The surface morphology of the coated films was analyzed by field-emission scanning electron microscopy, revealing two different surface structures, viz. nanorods and nanoplates. Under atomic force microscopy, the surface roughness of the films was found to decrease with increasing substrate temperature. The optical properties of the α-MoO
3
nanoplate thin films were analyzed by ultraviolet–visible and photoluminescence spectroscopy. The optical bandgap varied from 2.8 eV to 3.2 eV, recording a red-shift in the emission, with increasing substrate temperature from 350°C to 500°C. The electrical conductivity was also found to increase linearly with increasing substrate temperature. Various photodiode parameters such as ideality factor (
n
), barrier hight (Ф
B
), photo sensitivity (
P
S
), resistivity (
R
), quantum efficiency (QE) and detectivity (
D
*) were calculated for different light intensities from 0 mW/cm
2
to 120 mW/cm
2
based on the
I
–
V
characteristic. The diode fabricated at 500°C showed a remarkably high photosensitivity and specific detectivity of 610.51% and 1.149 × 10
11
Jones when measured at 120 mW/cm
2
.</description><subject>Atomic force microscopy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Doppler effect</subject><subject>Electrical resistivity</subject><subject>Electronics and Microelectronics</subject><subject>Emission analysis</subject><subject>Instrumentation</subject><subject>Luminous intensity</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Molybdenum oxides</subject><subject>Molybdenum trioxide</subject><subject>Morphology</subject><subject>Nanorods</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Parameter sensitivity</subject><subject>Photodiodes</subject><subject>Photoluminescence</subject><subject>Photosensitivity</subject><subject>Quantum efficiency</subject><subject>Red shift</subject><subject>Schottky diodes</subject><subject>Solid State Physics</subject><subject>Spray pyrolysis</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Thin films</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qGzEQx0VpoW6SF-hJ0LMaSeP1ro6t0yQublJwAr2JWX3ESjfSVlq3-CnyylXiQm-BgWGY_wf8CHkv-EfBeXtahFgs5oxLzngnoGXwisxEMwcmusWP12TGYSFYI6F5S96Vcs-5aEQnZuTxHPscDE4hRZo8XQ3D7iHE55ududFF6-JEl7vTkW0C3Zhtmqafe_oZcw4u07OQrCu039MNRvsnmG2Id_RbugZ6hTGNA071jXUiXcXJZY8m4EDXuK_u3wHp16vNd3rjzDaGXzt3TN54HIo7-bePyO35l5vlJVtfX6yWn9bMgFATUygtemVlC4gGpTJdb0TrpQNrEXovOZ8b1YOzvbKgJHYeLPeNaioI7uGIfDjkjjnV2jLp-7TLsVZqOedtK7gCqCp5UJmcSsnO6zGHB8x7Lbh-Aq8P4HUFr5_B6ycTHEyliuOdy_-jX3D9BUaih9Y</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Vivek, P.</creator><creator>Chandrasekaran, J.</creator><creator>Marnadu, R.</creator><creator>Maruthamuthu, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20200701</creationdate><title>Fabrication of Illumination-Dependent Cu/p-Si Schottky Barrier Diodes by Sandwiching MoO3 Nanoplates as an Interfacial Layer via JNSP Technique</title><author>Vivek, P. ; Chandrasekaran, J. ; Marnadu, R. ; Maruthamuthu, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9a2daf9d273aaca29c8bc17f2e3dda3bf2004c9b3edb9d392a8f3d0f5953610f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic force microscopy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Doppler effect</topic><topic>Electrical resistivity</topic><topic>Electronics and Microelectronics</topic><topic>Emission analysis</topic><topic>Instrumentation</topic><topic>Luminous intensity</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Molybdenum oxides</topic><topic>Molybdenum trioxide</topic><topic>Morphology</topic><topic>Nanorods</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Parameter sensitivity</topic><topic>Photodiodes</topic><topic>Photoluminescence</topic><topic>Photosensitivity</topic><topic>Quantum efficiency</topic><topic>Red shift</topic><topic>Schottky diodes</topic><topic>Solid State Physics</topic><topic>Spray pyrolysis</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vivek, P.</creatorcontrib><creatorcontrib>Chandrasekaran, J.</creatorcontrib><creatorcontrib>Marnadu, R.</creatorcontrib><creatorcontrib>Maruthamuthu, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vivek, P.</au><au>Chandrasekaran, J.</au><au>Marnadu, R.</au><au>Maruthamuthu, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Illumination-Dependent Cu/p-Si Schottky Barrier Diodes by Sandwiching MoO3 Nanoplates as an Interfacial Layer via JNSP Technique</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>49</volume><issue>7</issue><spage>4249</spage><epage>4264</epage><pages>4249-4264</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Highly oriented ultrathin MoO
3
nanoplate thin films have been synthesized on a large scale using a low-cost spray pyrolysis technique at different substrate temperatures (350°C, 400°C, 450°C, and 500°C). High-quality single-phase orthorhombic α-MoO
3
nanoplate film was observed by x-ray diffraction analysis. The surface morphology of the coated films was analyzed by field-emission scanning electron microscopy, revealing two different surface structures, viz. nanorods and nanoplates. Under atomic force microscopy, the surface roughness of the films was found to decrease with increasing substrate temperature. The optical properties of the α-MoO
3
nanoplate thin films were analyzed by ultraviolet–visible and photoluminescence spectroscopy. The optical bandgap varied from 2.8 eV to 3.2 eV, recording a red-shift in the emission, with increasing substrate temperature from 350°C to 500°C. The electrical conductivity was also found to increase linearly with increasing substrate temperature. Various photodiode parameters such as ideality factor (
n
), barrier hight (Ф
B
), photo sensitivity (
P
S
), resistivity (
R
), quantum efficiency (QE) and detectivity (
D
*) were calculated for different light intensities from 0 mW/cm
2
to 120 mW/cm
2
based on the
I
–
V
characteristic. The diode fabricated at 500°C showed a remarkably high photosensitivity and specific detectivity of 610.51% and 1.149 × 10
11
Jones when measured at 120 mW/cm
2
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08137-3</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2020-07, Vol.49 (7), p.4249-4264 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2407710933 |
source | Springer Link |
subjects | Atomic force microscopy Characterization and Evaluation of Materials Chemistry and Materials Science Doppler effect Electrical resistivity Electronics and Microelectronics Emission analysis Instrumentation Luminous intensity Materials Science Microscopy Molybdenum oxides Molybdenum trioxide Morphology Nanorods Optical and Electronic Materials Optical properties Parameter sensitivity Photodiodes Photoluminescence Photosensitivity Quantum efficiency Red shift Schottky diodes Solid State Physics Spray pyrolysis Substrates Surface roughness Thin films |
title | Fabrication of Illumination-Dependent Cu/p-Si Schottky Barrier Diodes by Sandwiching MoO3 Nanoplates as an Interfacial Layer via JNSP Technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Illumination-Dependent%20Cu/p-Si%20Schottky%20Barrier%20Diodes%20by%20Sandwiching%20MoO3%20Nanoplates%20as%20an%20Interfacial%20Layer%20via%20JNSP%20Technique&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Vivek,%20P.&rft.date=2020-07-01&rft.volume=49&rft.issue=7&rft.spage=4249&rft.epage=4264&rft.pages=4249-4264&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08137-3&rft_dat=%3Cproquest_cross%3E2407710933%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9a2daf9d273aaca29c8bc17f2e3dda3bf2004c9b3edb9d392a8f3d0f5953610f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407710933&rft_id=info:pmid/&rfr_iscdi=true |