Loading…

An advanced active set L-BFGS algorithm for training weight-constrained neural networks

In this work, a new advanced active set limited memory BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm is proposed for efficiently training weight-constrained neural networks, called AA-L-BFGS. The proposed algorithm possesses the significant property of approximating the curvature of the error fu...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2020-06, Vol.32 (11), p.6669-6684
Main Author: Livieris, Ioannis E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-360b90084dca29c12d4c3e078a1e703b90b9e23ea037d86475580582fe2494463
cites cdi_FETCH-LOGICAL-c319t-360b90084dca29c12d4c3e078a1e703b90b9e23ea037d86475580582fe2494463
container_end_page 6684
container_issue 11
container_start_page 6669
container_title Neural computing & applications
container_volume 32
creator Livieris, Ioannis E.
description In this work, a new advanced active set limited memory BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm is proposed for efficiently training weight-constrained neural networks, called AA-L-BFGS. The proposed algorithm possesses the significant property of approximating the curvature of the error function with high-order accuracy by utilizing the theoretically advanced secant condition proposed by Livieris and Pintelas (Appl Math Comput 221:491–502, 2013). Moreover, the global convergence of the proposed algorithm is established provided that the line search satisfies the modified Armijo condition. The presented numerical experiments illustrate the efficiency of the proposed AA-L-BFGS, providing empirical evidence that it significantly accelerates the convergence of the training process.
doi_str_mv 10.1007/s00521-019-04689-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407711689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407711689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-360b90084dca29c12d4c3e078a1e703b90b9e23ea037d86475580582fe2494463</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwFPAc3Ty2EeOtdgqFDyoeAxpNrvd2mZrkrb025t2BW-eBub_GOaH0C2FewpQPASAjFECVBIQeSlJfoYGVHBOOGTlORqAFEnOBb9EVyEsAY62bIA-Rw7raqedsRXWJrY7i4ONeEYeJ9M3rFdN59u4WOO68zh63brWNXhv22YRielcOO1S1tmt16s04r7zX-EaXdR6FezN7xyij8nT-_iZzF6nL-PRjBhOZSQ8h7kEKEVlNJOGskoYbqEoNbUF8KTNpWXcauBFVeaiyLIyPcRqy4QUIudDdNf3bnz3vbUhqmW39S6dVExAUVCaaCQX613GdyF4W6uNb9faHxQFdQSoeoAqAVQngOpYzftQSGbXWP9X_U_qB4i6cig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407711689</pqid></control><display><type>article</type><title>An advanced active set L-BFGS algorithm for training weight-constrained neural networks</title><source>Springer Nature</source><creator>Livieris, Ioannis E.</creator><creatorcontrib>Livieris, Ioannis E.</creatorcontrib><description>In this work, a new advanced active set limited memory BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm is proposed for efficiently training weight-constrained neural networks, called AA-L-BFGS. The proposed algorithm possesses the significant property of approximating the curvature of the error function with high-order accuracy by utilizing the theoretically advanced secant condition proposed by Livieris and Pintelas (Appl Math Comput 221:491–502, 2013). Moreover, the global convergence of the proposed algorithm is established provided that the line search satisfies the modified Armijo condition. The presented numerical experiments illustrate the efficiency of the proposed AA-L-BFGS, providing empirical evidence that it significantly accelerates the convergence of the training process.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-019-04689-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Convergence ; Data Mining and Knowledge Discovery ; Error functions ; Image Processing and Computer Vision ; Neural networks ; Probability and Statistics in Computer Science ; S.I. : Brain inspired Computing&amp;Machine Learning Applied Research-BISMLARE ; Training ; Weight</subject><ispartof>Neural computing &amp; applications, 2020-06, Vol.32 (11), p.6669-6684</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-360b90084dca29c12d4c3e078a1e703b90b9e23ea037d86475580582fe2494463</citedby><cites>FETCH-LOGICAL-c319t-360b90084dca29c12d4c3e078a1e703b90b9e23ea037d86475580582fe2494463</cites><orcidid>0000-0002-3996-3301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Livieris, Ioannis E.</creatorcontrib><title>An advanced active set L-BFGS algorithm for training weight-constrained neural networks</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>In this work, a new advanced active set limited memory BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm is proposed for efficiently training weight-constrained neural networks, called AA-L-BFGS. The proposed algorithm possesses the significant property of approximating the curvature of the error function with high-order accuracy by utilizing the theoretically advanced secant condition proposed by Livieris and Pintelas (Appl Math Comput 221:491–502, 2013). Moreover, the global convergence of the proposed algorithm is established provided that the line search satisfies the modified Armijo condition. The presented numerical experiments illustrate the efficiency of the proposed AA-L-BFGS, providing empirical evidence that it significantly accelerates the convergence of the training process.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Error functions</subject><subject>Image Processing and Computer Vision</subject><subject>Neural networks</subject><subject>Probability and Statistics in Computer Science</subject><subject>S.I. : Brain inspired Computing&amp;Machine Learning Applied Research-BISMLARE</subject><subject>Training</subject><subject>Weight</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKtfwFPAc3Ty2EeOtdgqFDyoeAxpNrvd2mZrkrb025t2BW-eBub_GOaH0C2FewpQPASAjFECVBIQeSlJfoYGVHBOOGTlORqAFEnOBb9EVyEsAY62bIA-Rw7raqedsRXWJrY7i4ONeEYeJ9M3rFdN59u4WOO68zh63brWNXhv22YRielcOO1S1tmt16s04r7zX-EaXdR6FezN7xyij8nT-_iZzF6nL-PRjBhOZSQ8h7kEKEVlNJOGskoYbqEoNbUF8KTNpWXcauBFVeaiyLIyPcRqy4QUIudDdNf3bnz3vbUhqmW39S6dVExAUVCaaCQX613GdyF4W6uNb9faHxQFdQSoeoAqAVQngOpYzftQSGbXWP9X_U_qB4i6cig</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Livieris, Ioannis E.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3996-3301</orcidid></search><sort><creationdate>20200601</creationdate><title>An advanced active set L-BFGS algorithm for training weight-constrained neural networks</title><author>Livieris, Ioannis E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-360b90084dca29c12d4c3e078a1e703b90b9e23ea037d86475580582fe2494463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Error functions</topic><topic>Image Processing and Computer Vision</topic><topic>Neural networks</topic><topic>Probability and Statistics in Computer Science</topic><topic>S.I. : Brain inspired Computing&amp;Machine Learning Applied Research-BISMLARE</topic><topic>Training</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Livieris, Ioannis E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Livieris, Ioannis E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An advanced active set L-BFGS algorithm for training weight-constrained neural networks</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>32</volume><issue>11</issue><spage>6669</spage><epage>6684</epage><pages>6669-6684</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this work, a new advanced active set limited memory BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm is proposed for efficiently training weight-constrained neural networks, called AA-L-BFGS. The proposed algorithm possesses the significant property of approximating the curvature of the error function with high-order accuracy by utilizing the theoretically advanced secant condition proposed by Livieris and Pintelas (Appl Math Comput 221:491–502, 2013). Moreover, the global convergence of the proposed algorithm is established provided that the line search satisfies the modified Armijo condition. The presented numerical experiments illustrate the efficiency of the proposed AA-L-BFGS, providing empirical evidence that it significantly accelerates the convergence of the training process.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-019-04689-6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3996-3301</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2020-06, Vol.32 (11), p.6669-6684
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2407711689
source Springer Nature
subjects Algorithms
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Convergence
Data Mining and Knowledge Discovery
Error functions
Image Processing and Computer Vision
Neural networks
Probability and Statistics in Computer Science
S.I. : Brain inspired Computing&Machine Learning Applied Research-BISMLARE
Training
Weight
title An advanced active set L-BFGS algorithm for training weight-constrained neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20advanced%20active%20set%20L-BFGS%20algorithm%20for%20training%20weight-constrained%20neural%20networks&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Livieris,%20Ioannis%20E.&rft.date=2020-06-01&rft.volume=32&rft.issue=11&rft.spage=6669&rft.epage=6684&rft.pages=6669-6684&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-019-04689-6&rft_dat=%3Cproquest_cross%3E2407711689%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-360b90084dca29c12d4c3e078a1e703b90b9e23ea037d86475580582fe2494463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407711689&rft_id=info:pmid/&rfr_iscdi=true