Loading…
Multifractal Analysis of Rainfall-Rate Datasets Obtained by Radar and Numerical Model: The Case Study of Typhoon Bolaven (2012)
Typhoon Bolaven caused significant damage with severe rainfall all over South Korea, including Cheju Island, which received more than 250 mm in 2 days in August 2012. It was regarded as the most powerful storm to strike the Korean Peninsula in nearly a decade. The rainfall-rate datasets were obtaine...
Saved in:
Published in: | Journal of applied meteorology and climatology 2020-05, Vol.59 (5), p.819-840 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-2f02e5c0de337234a654e0dc06cbcfa1e40b7a9abc062ef3fadb6d82891769723 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-2f02e5c0de337234a654e0dc06cbcfa1e40b7a9abc062ef3fadb6d82891769723 |
container_end_page | 840 |
container_issue | 5 |
container_start_page | 819 |
container_title | Journal of applied meteorology and climatology |
container_volume | 59 |
creator | Lee, J. Paz, I. Schertzer, D. Lee, D. I. Tchiguirinskaia, I. |
description | Typhoon Bolaven caused significant damage with severe rainfall all over South Korea, including Cheju Island, which received more than 250 mm in 2 days in August 2012. It was regarded as the most powerful storm to strike the Korean Peninsula in nearly a decade. The rainfall-rate datasets were obtained from S-band radar operated by the Korea Meteorological Administration to be analyzed and compared with the mesoscale Cloud Resolving Storm Simulator (CReSS) model simulation. Multifractal analysis was conducted to understand the structure of the rainfall rate with height in the typhoon system. The radar rainfall data presented with strong intermittency across scales at lower altitudes (1 and 2 km) and a more homogeneous rainfall field at high altitude (5 km) with two parameters (fractal codimension and multifractality index). The statistical scaling moment function and maximal singularities show clear significant differences between radar and the CReSS model. |
doi_str_mv | 10.1175/jamc-d-18-0209.1 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2407765295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27118392</jstor_id><sourcerecordid>27118392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2f02e5c0de337234a654e0dc06cbcfa1e40b7a9abc062ef3fadb6d82891769723</originalsourceid><addsrcrecordid>eNo9kMtrAjEQh5fSQq3tvZdCoOfYPDe7R9E-0QpSz2E2D1hZXZtkD_73jVg8zTDzfQPzK4pHSiaUKvmyhZ3BFtMKE0bqCb0qRlTKCleCs-tLz8RtcRfjlhAhlJKjYrMcutT6ACZBh6Z76I6xjaj3aA3t3kPX4TUkh-aQILoU0apJeeEsao4ZsRAQ7C36HnYutCafWPbWdffFTVaje_iv42Lz9voz-8CL1fvnbLrAhss6YeYJc9IQ6zhXjAsopXDEGlKaxnigTpBGQQ1NnjDnuQfblLZiVU1VWWdjXDyf7x5C_zu4mPS2H0J-ImomiFKlZLXMFDlTJvQxBuf1IbQ7CEdNiT6Fp7-my5mea1rpU3iaZuXprGxj6sOFZ4rSiteM_wFjDmx5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407765295</pqid></control><display><type>article</type><title>Multifractal Analysis of Rainfall-Rate Datasets Obtained by Radar and Numerical Model: The Case Study of Typhoon Bolaven (2012)</title><source>JSTOR</source><creator>Lee, J. ; Paz, I. ; Schertzer, D. ; Lee, D. I. ; Tchiguirinskaia, I.</creator><creatorcontrib>Lee, J. ; Paz, I. ; Schertzer, D. ; Lee, D. I. ; Tchiguirinskaia, I.</creatorcontrib><description>Typhoon Bolaven caused significant damage with severe rainfall all over South Korea, including Cheju Island, which received more than 250 mm in 2 days in August 2012. It was regarded as the most powerful storm to strike the Korean Peninsula in nearly a decade. The rainfall-rate datasets were obtained from S-band radar operated by the Korea Meteorological Administration to be analyzed and compared with the mesoscale Cloud Resolving Storm Simulator (CReSS) model simulation. Multifractal analysis was conducted to understand the structure of the rainfall rate with height in the typhoon system. The radar rainfall data presented with strong intermittency across scales at lower altitudes (1 and 2 km) and a more homogeneous rainfall field at high altitude (5 km) with two parameters (fractal codimension and multifractality index). The statistical scaling moment function and maximal singularities show clear significant differences between radar and the CReSS model.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/jamc-d-18-0209.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Case studies ; Clouds ; Computer simulation ; Datasets ; Fractal analysis ; High altitude ; Hurricanes ; Hydrologic data ; Mathematical models ; Numerical models ; Radar ; Radar data ; Radar rainfall ; Rain ; Rainfall ; Rainfall data ; Rainfall rate ; Scaling ; Simulation ; Simulators ; Singularities ; Spacetime ; Storms ; Typhoons</subject><ispartof>Journal of applied meteorology and climatology, 2020-05, Vol.59 (5), p.819-840</ispartof><rights>2020 American Meteorological Society</rights><rights>Copyright American Meteorological Society May 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-2f02e5c0de337234a654e0dc06cbcfa1e40b7a9abc062ef3fadb6d82891769723</citedby><cites>FETCH-LOGICAL-c359t-2f02e5c0de337234a654e0dc06cbcfa1e40b7a9abc062ef3fadb6d82891769723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27118392$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27118392$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>Lee, J.</creatorcontrib><creatorcontrib>Paz, I.</creatorcontrib><creatorcontrib>Schertzer, D.</creatorcontrib><creatorcontrib>Lee, D. I.</creatorcontrib><creatorcontrib>Tchiguirinskaia, I.</creatorcontrib><title>Multifractal Analysis of Rainfall-Rate Datasets Obtained by Radar and Numerical Model: The Case Study of Typhoon Bolaven (2012)</title><title>Journal of applied meteorology and climatology</title><description>Typhoon Bolaven caused significant damage with severe rainfall all over South Korea, including Cheju Island, which received more than 250 mm in 2 days in August 2012. It was regarded as the most powerful storm to strike the Korean Peninsula in nearly a decade. The rainfall-rate datasets were obtained from S-band radar operated by the Korea Meteorological Administration to be analyzed and compared with the mesoscale Cloud Resolving Storm Simulator (CReSS) model simulation. Multifractal analysis was conducted to understand the structure of the rainfall rate with height in the typhoon system. The radar rainfall data presented with strong intermittency across scales at lower altitudes (1 and 2 km) and a more homogeneous rainfall field at high altitude (5 km) with two parameters (fractal codimension and multifractality index). The statistical scaling moment function and maximal singularities show clear significant differences between radar and the CReSS model.</description><subject>Case studies</subject><subject>Clouds</subject><subject>Computer simulation</subject><subject>Datasets</subject><subject>Fractal analysis</subject><subject>High altitude</subject><subject>Hurricanes</subject><subject>Hydrologic data</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar rainfall</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall data</subject><subject>Rainfall rate</subject><subject>Scaling</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Singularities</subject><subject>Spacetime</subject><subject>Storms</subject><subject>Typhoons</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtrAjEQh5fSQq3tvZdCoOfYPDe7R9E-0QpSz2E2D1hZXZtkD_73jVg8zTDzfQPzK4pHSiaUKvmyhZ3BFtMKE0bqCb0qRlTKCleCs-tLz8RtcRfjlhAhlJKjYrMcutT6ACZBh6Z76I6xjaj3aA3t3kPX4TUkh-aQILoU0apJeeEsao4ZsRAQ7C36HnYutCafWPbWdffFTVaje_iv42Lz9voz-8CL1fvnbLrAhss6YeYJc9IQ6zhXjAsopXDEGlKaxnigTpBGQQ1NnjDnuQfblLZiVU1VWWdjXDyf7x5C_zu4mPS2H0J-ImomiFKlZLXMFDlTJvQxBuf1IbQ7CEdNiT6Fp7-my5mea1rpU3iaZuXprGxj6sOFZ4rSiteM_wFjDmx5</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Lee, J.</creator><creator>Paz, I.</creator><creator>Schertzer, D.</creator><creator>Lee, D. I.</creator><creator>Tchiguirinskaia, I.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20200501</creationdate><title>Multifractal Analysis of Rainfall-Rate Datasets Obtained by Radar and Numerical Model</title><author>Lee, J. ; Paz, I. ; Schertzer, D. ; Lee, D. I. ; Tchiguirinskaia, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2f02e5c0de337234a654e0dc06cbcfa1e40b7a9abc062ef3fadb6d82891769723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Case studies</topic><topic>Clouds</topic><topic>Computer simulation</topic><topic>Datasets</topic><topic>Fractal analysis</topic><topic>High altitude</topic><topic>Hurricanes</topic><topic>Hydrologic data</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar rainfall</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall data</topic><topic>Rainfall rate</topic><topic>Scaling</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Singularities</topic><topic>Spacetime</topic><topic>Storms</topic><topic>Typhoons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, J.</creatorcontrib><creatorcontrib>Paz, I.</creatorcontrib><creatorcontrib>Schertzer, D.</creatorcontrib><creatorcontrib>Lee, D. I.</creatorcontrib><creatorcontrib>Tchiguirinskaia, I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, J.</au><au>Paz, I.</au><au>Schertzer, D.</au><au>Lee, D. I.</au><au>Tchiguirinskaia, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifractal Analysis of Rainfall-Rate Datasets Obtained by Radar and Numerical Model: The Case Study of Typhoon Bolaven (2012)</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>59</volume><issue>5</issue><spage>819</spage><epage>840</epage><pages>819-840</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><abstract>Typhoon Bolaven caused significant damage with severe rainfall all over South Korea, including Cheju Island, which received more than 250 mm in 2 days in August 2012. It was regarded as the most powerful storm to strike the Korean Peninsula in nearly a decade. The rainfall-rate datasets were obtained from S-band radar operated by the Korea Meteorological Administration to be analyzed and compared with the mesoscale Cloud Resolving Storm Simulator (CReSS) model simulation. Multifractal analysis was conducted to understand the structure of the rainfall rate with height in the typhoon system. The radar rainfall data presented with strong intermittency across scales at lower altitudes (1 and 2 km) and a more homogeneous rainfall field at high altitude (5 km) with two parameters (fractal codimension and multifractality index). The statistical scaling moment function and maximal singularities show clear significant differences between radar and the CReSS model.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jamc-d-18-0209.1</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8424 |
ispartof | Journal of applied meteorology and climatology, 2020-05, Vol.59 (5), p.819-840 |
issn | 1558-8424 1558-8432 |
language | eng |
recordid | cdi_proquest_journals_2407765295 |
source | JSTOR |
subjects | Case studies Clouds Computer simulation Datasets Fractal analysis High altitude Hurricanes Hydrologic data Mathematical models Numerical models Radar Radar data Radar rainfall Rain Rainfall Rainfall data Rainfall rate Scaling Simulation Simulators Singularities Spacetime Storms Typhoons |
title | Multifractal Analysis of Rainfall-Rate Datasets Obtained by Radar and Numerical Model: The Case Study of Typhoon Bolaven (2012) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifractal%20Analysis%20of%20Rainfall-Rate%20Datasets%20Obtained%20by%20Radar%20and%20Numerical%20Model:%20The%20Case%20Study%20of%20Typhoon%20Bolaven%20(2012)&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Lee,%20J.&rft.date=2020-05-01&rft.volume=59&rft.issue=5&rft.spage=819&rft.epage=840&rft.pages=819-840&rft.issn=1558-8424&rft.eissn=1558-8432&rft_id=info:doi/10.1175/jamc-d-18-0209.1&rft_dat=%3Cjstor_proqu%3E27118392%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-2f02e5c0de337234a654e0dc06cbcfa1e40b7a9abc062ef3fadb6d82891769723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407765295&rft_id=info:pmid/&rft_jstor_id=27118392&rfr_iscdi=true |