Loading…

Multifractal Analysis of Rainfall-Rate Datasets Obtained by Radar and Numerical Model: The Case Study of Typhoon Bolaven (2012)

Typhoon Bolaven caused significant damage with severe rainfall all over South Korea, including Cheju Island, which received more than 250 mm in 2 days in August 2012. It was regarded as the most powerful storm to strike the Korean Peninsula in nearly a decade. The rainfall-rate datasets were obtaine...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied meteorology and climatology 2020-05, Vol.59 (5), p.819-840
Main Authors: Lee, J., Paz, I., Schertzer, D., Lee, D. I., Tchiguirinskaia, I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-2f02e5c0de337234a654e0dc06cbcfa1e40b7a9abc062ef3fadb6d82891769723
cites cdi_FETCH-LOGICAL-c359t-2f02e5c0de337234a654e0dc06cbcfa1e40b7a9abc062ef3fadb6d82891769723
container_end_page 840
container_issue 5
container_start_page 819
container_title Journal of applied meteorology and climatology
container_volume 59
creator Lee, J.
Paz, I.
Schertzer, D.
Lee, D. I.
Tchiguirinskaia, I.
description Typhoon Bolaven caused significant damage with severe rainfall all over South Korea, including Cheju Island, which received more than 250 mm in 2 days in August 2012. It was regarded as the most powerful storm to strike the Korean Peninsula in nearly a decade. The rainfall-rate datasets were obtained from S-band radar operated by the Korea Meteorological Administration to be analyzed and compared with the mesoscale Cloud Resolving Storm Simulator (CReSS) model simulation. Multifractal analysis was conducted to understand the structure of the rainfall rate with height in the typhoon system. The radar rainfall data presented with strong intermittency across scales at lower altitudes (1 and 2 km) and a more homogeneous rainfall field at high altitude (5 km) with two parameters (fractal codimension and multifractality index). The statistical scaling moment function and maximal singularities show clear significant differences between radar and the CReSS model.
doi_str_mv 10.1175/jamc-d-18-0209.1
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2407765295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27118392</jstor_id><sourcerecordid>27118392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2f02e5c0de337234a654e0dc06cbcfa1e40b7a9abc062ef3fadb6d82891769723</originalsourceid><addsrcrecordid>eNo9kMtrAjEQh5fSQq3tvZdCoOfYPDe7R9E-0QpSz2E2D1hZXZtkD_73jVg8zTDzfQPzK4pHSiaUKvmyhZ3BFtMKE0bqCb0qRlTKCleCs-tLz8RtcRfjlhAhlJKjYrMcutT6ACZBh6Z76I6xjaj3aA3t3kPX4TUkh-aQILoU0apJeeEsao4ZsRAQ7C36HnYutCafWPbWdffFTVaje_iv42Lz9voz-8CL1fvnbLrAhss6YeYJc9IQ6zhXjAsopXDEGlKaxnigTpBGQQ1NnjDnuQfblLZiVU1VWWdjXDyf7x5C_zu4mPS2H0J-ImomiFKlZLXMFDlTJvQxBuf1IbQ7CEdNiT6Fp7-my5mea1rpU3iaZuXprGxj6sOFZ4rSiteM_wFjDmx5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407765295</pqid></control><display><type>article</type><title>Multifractal Analysis of Rainfall-Rate Datasets Obtained by Radar and Numerical Model: The Case Study of Typhoon Bolaven (2012)</title><source>JSTOR</source><creator>Lee, J. ; Paz, I. ; Schertzer, D. ; Lee, D. I. ; Tchiguirinskaia, I.</creator><creatorcontrib>Lee, J. ; Paz, I. ; Schertzer, D. ; Lee, D. I. ; Tchiguirinskaia, I.</creatorcontrib><description>Typhoon Bolaven caused significant damage with severe rainfall all over South Korea, including Cheju Island, which received more than 250 mm in 2 days in August 2012. It was regarded as the most powerful storm to strike the Korean Peninsula in nearly a decade. The rainfall-rate datasets were obtained from S-band radar operated by the Korea Meteorological Administration to be analyzed and compared with the mesoscale Cloud Resolving Storm Simulator (CReSS) model simulation. Multifractal analysis was conducted to understand the structure of the rainfall rate with height in the typhoon system. The radar rainfall data presented with strong intermittency across scales at lower altitudes (1 and 2 km) and a more homogeneous rainfall field at high altitude (5 km) with two parameters (fractal codimension and multifractality index). The statistical scaling moment function and maximal singularities show clear significant differences between radar and the CReSS model.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/jamc-d-18-0209.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Case studies ; Clouds ; Computer simulation ; Datasets ; Fractal analysis ; High altitude ; Hurricanes ; Hydrologic data ; Mathematical models ; Numerical models ; Radar ; Radar data ; Radar rainfall ; Rain ; Rainfall ; Rainfall data ; Rainfall rate ; Scaling ; Simulation ; Simulators ; Singularities ; Spacetime ; Storms ; Typhoons</subject><ispartof>Journal of applied meteorology and climatology, 2020-05, Vol.59 (5), p.819-840</ispartof><rights>2020 American Meteorological Society</rights><rights>Copyright American Meteorological Society May 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-2f02e5c0de337234a654e0dc06cbcfa1e40b7a9abc062ef3fadb6d82891769723</citedby><cites>FETCH-LOGICAL-c359t-2f02e5c0de337234a654e0dc06cbcfa1e40b7a9abc062ef3fadb6d82891769723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27118392$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27118392$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>Lee, J.</creatorcontrib><creatorcontrib>Paz, I.</creatorcontrib><creatorcontrib>Schertzer, D.</creatorcontrib><creatorcontrib>Lee, D. I.</creatorcontrib><creatorcontrib>Tchiguirinskaia, I.</creatorcontrib><title>Multifractal Analysis of Rainfall-Rate Datasets Obtained by Radar and Numerical Model: The Case Study of Typhoon Bolaven (2012)</title><title>Journal of applied meteorology and climatology</title><description>Typhoon Bolaven caused significant damage with severe rainfall all over South Korea, including Cheju Island, which received more than 250 mm in 2 days in August 2012. It was regarded as the most powerful storm to strike the Korean Peninsula in nearly a decade. The rainfall-rate datasets were obtained from S-band radar operated by the Korea Meteorological Administration to be analyzed and compared with the mesoscale Cloud Resolving Storm Simulator (CReSS) model simulation. Multifractal analysis was conducted to understand the structure of the rainfall rate with height in the typhoon system. The radar rainfall data presented with strong intermittency across scales at lower altitudes (1 and 2 km) and a more homogeneous rainfall field at high altitude (5 km) with two parameters (fractal codimension and multifractality index). The statistical scaling moment function and maximal singularities show clear significant differences between radar and the CReSS model.</description><subject>Case studies</subject><subject>Clouds</subject><subject>Computer simulation</subject><subject>Datasets</subject><subject>Fractal analysis</subject><subject>High altitude</subject><subject>Hurricanes</subject><subject>Hydrologic data</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar rainfall</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall data</subject><subject>Rainfall rate</subject><subject>Scaling</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Singularities</subject><subject>Spacetime</subject><subject>Storms</subject><subject>Typhoons</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtrAjEQh5fSQq3tvZdCoOfYPDe7R9E-0QpSz2E2D1hZXZtkD_73jVg8zTDzfQPzK4pHSiaUKvmyhZ3BFtMKE0bqCb0qRlTKCleCs-tLz8RtcRfjlhAhlJKjYrMcutT6ACZBh6Z76I6xjaj3aA3t3kPX4TUkh-aQILoU0apJeeEsao4ZsRAQ7C36HnYutCafWPbWdffFTVaje_iv42Lz9voz-8CL1fvnbLrAhss6YeYJc9IQ6zhXjAsopXDEGlKaxnigTpBGQQ1NnjDnuQfblLZiVU1VWWdjXDyf7x5C_zu4mPS2H0J-ImomiFKlZLXMFDlTJvQxBuf1IbQ7CEdNiT6Fp7-my5mea1rpU3iaZuXprGxj6sOFZ4rSiteM_wFjDmx5</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Lee, J.</creator><creator>Paz, I.</creator><creator>Schertzer, D.</creator><creator>Lee, D. I.</creator><creator>Tchiguirinskaia, I.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20200501</creationdate><title>Multifractal Analysis of Rainfall-Rate Datasets Obtained by Radar and Numerical Model</title><author>Lee, J. ; Paz, I. ; Schertzer, D. ; Lee, D. I. ; Tchiguirinskaia, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2f02e5c0de337234a654e0dc06cbcfa1e40b7a9abc062ef3fadb6d82891769723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Case studies</topic><topic>Clouds</topic><topic>Computer simulation</topic><topic>Datasets</topic><topic>Fractal analysis</topic><topic>High altitude</topic><topic>Hurricanes</topic><topic>Hydrologic data</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar rainfall</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall data</topic><topic>Rainfall rate</topic><topic>Scaling</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Singularities</topic><topic>Spacetime</topic><topic>Storms</topic><topic>Typhoons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, J.</creatorcontrib><creatorcontrib>Paz, I.</creatorcontrib><creatorcontrib>Schertzer, D.</creatorcontrib><creatorcontrib>Lee, D. I.</creatorcontrib><creatorcontrib>Tchiguirinskaia, I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, J.</au><au>Paz, I.</au><au>Schertzer, D.</au><au>Lee, D. I.</au><au>Tchiguirinskaia, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifractal Analysis of Rainfall-Rate Datasets Obtained by Radar and Numerical Model: The Case Study of Typhoon Bolaven (2012)</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>59</volume><issue>5</issue><spage>819</spage><epage>840</epage><pages>819-840</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><abstract>Typhoon Bolaven caused significant damage with severe rainfall all over South Korea, including Cheju Island, which received more than 250 mm in 2 days in August 2012. It was regarded as the most powerful storm to strike the Korean Peninsula in nearly a decade. The rainfall-rate datasets were obtained from S-band radar operated by the Korea Meteorological Administration to be analyzed and compared with the mesoscale Cloud Resolving Storm Simulator (CReSS) model simulation. Multifractal analysis was conducted to understand the structure of the rainfall rate with height in the typhoon system. The radar rainfall data presented with strong intermittency across scales at lower altitudes (1 and 2 km) and a more homogeneous rainfall field at high altitude (5 km) with two parameters (fractal codimension and multifractality index). The statistical scaling moment function and maximal singularities show clear significant differences between radar and the CReSS model.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jamc-d-18-0209.1</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1558-8424
ispartof Journal of applied meteorology and climatology, 2020-05, Vol.59 (5), p.819-840
issn 1558-8424
1558-8432
language eng
recordid cdi_proquest_journals_2407765295
source JSTOR
subjects Case studies
Clouds
Computer simulation
Datasets
Fractal analysis
High altitude
Hurricanes
Hydrologic data
Mathematical models
Numerical models
Radar
Radar data
Radar rainfall
Rain
Rainfall
Rainfall data
Rainfall rate
Scaling
Simulation
Simulators
Singularities
Spacetime
Storms
Typhoons
title Multifractal Analysis of Rainfall-Rate Datasets Obtained by Radar and Numerical Model: The Case Study of Typhoon Bolaven (2012)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifractal%20Analysis%20of%20Rainfall-Rate%20Datasets%20Obtained%20by%20Radar%20and%20Numerical%20Model:%20The%20Case%20Study%20of%20Typhoon%20Bolaven%20(2012)&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Lee,%20J.&rft.date=2020-05-01&rft.volume=59&rft.issue=5&rft.spage=819&rft.epage=840&rft.pages=819-840&rft.issn=1558-8424&rft.eissn=1558-8432&rft_id=info:doi/10.1175/jamc-d-18-0209.1&rft_dat=%3Cjstor_proqu%3E27118392%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-2f02e5c0de337234a654e0dc06cbcfa1e40b7a9abc062ef3fadb6d82891769723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407765295&rft_id=info:pmid/&rft_jstor_id=27118392&rfr_iscdi=true