Loading…

Frequency Ratio Measurements with 18-digit Accuracy Using a Network of Optical Clocks

Atomic clocks occupy a unique position in measurement science, exhibiting higher accuracy than any other measurement standard and underpinning six out of seven base units in the SI system. By exploiting higher resonance frequencies, optical atomic clocks now achieve greater stability and lower frequ...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-05
Main Authors: Boulder Atomic Clock Optical Network, Collaboration, Beloy, Kyle, Bodine, Martha I, Bothwell, Tobias, Brewer, Samuel M, Bromley, Sarah L, Chen, Jwo-Sy, Jean-Daniel Deschênes, Diddams, Scott A, Fasano, Robert J, tier, Tara M, Hassan, Youssef S, Hume, David B, Kedar, Dhruv, Kennedy, Colin J, Khader, Isaac, Koepke, Amanda, Leibrandt, David R, Leopardi, Holly, Ludlow, Andrew D, McGrew, William F, Milner, William R, Newbury, Nathan R, Nicolodi, Daniele, Oelker, Eric, Parker, Thomas E, Robinson, John M, Romisch, Stefania, Schäffer, Stefan A, Sherman, Jeffrey A, Sinclair, Laura C, Sonderhouse, Lindsay, Swann, William C, Yao, Jian, Ye, Jun, Zhang, Xiaogang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Boulder Atomic Clock Optical Network
Collaboration
Beloy, Kyle
Bodine, Martha I
Bothwell, Tobias
Brewer, Samuel M
Bromley, Sarah L
Chen, Jwo-Sy
Jean-Daniel Deschênes
Diddams, Scott A
Fasano, Robert J
tier, Tara M
Hassan, Youssef S
Hume, David B
Kedar, Dhruv
Kennedy, Colin J
Khader, Isaac
Koepke, Amanda
Leibrandt, David R
Leopardi, Holly
Ludlow, Andrew D
McGrew, William F
Milner, William R
Newbury, Nathan R
Nicolodi, Daniele
Oelker, Eric
Parker, Thomas E
Robinson, John M
Romisch, Stefania
Schäffer, Stefan A
Sherman, Jeffrey A
Sinclair, Laura C
Sonderhouse, Lindsay
Swann, William C
Yao, Jian
Ye, Jun
Zhang, Xiaogang
description Atomic clocks occupy a unique position in measurement science, exhibiting higher accuracy than any other measurement standard and underpinning six out of seven base units in the SI system. By exploiting higher resonance frequencies, optical atomic clocks now achieve greater stability and lower frequency uncertainty than existing primary standards. Here, we report frequency ratios of the \(^{27}\)Al\(^+\), \(^{171}\)Yb and \(^{87}\)Sr optical clocks in Boulder, Colorado, measured across an optical network spanned by both fiber and free-space links. These ratios have been evaluated with measurement uncertainties between \(6\times10^{-18}\) and \(8\times10^{-18}\), making them the most accurate reported measurements of frequency ratios to date. This represents a critical step towards redefinition of the SI second and future applications such as relativistic geodesy and tests of fundamental physics.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2408366003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408366003</sourcerecordid><originalsourceid>FETCH-proquest_journals_24083660033</originalsourceid><addsrcrecordid>eNqNjUELgjAYQEcQJOV_-KCzMDc1ryFJlwqizjLWtKlttm8i_fs89AM6vcN78BYkYJzHUZ4wtiIhYkspZdmOpSkPyL106j0qIz9wFV5bOCmBo1MvZTzCpP0T4jx66EZ72Es5OjGXd9SmAQFn5SfrOrA1XAavpeih6K3scEOWtehRhT-uybY83IpjNDg739BXrR2dmVXFEprzLKOU8_-qL20EQAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408366003</pqid></control><display><type>article</type><title>Frequency Ratio Measurements with 18-digit Accuracy Using a Network of Optical Clocks</title><source>Publicly Available Content (ProQuest)</source><creator>Boulder Atomic Clock Optical Network ; Collaboration ; Beloy, Kyle ; Bodine, Martha I ; Bothwell, Tobias ; Brewer, Samuel M ; Bromley, Sarah L ; Chen, Jwo-Sy ; Jean-Daniel Deschênes ; Diddams, Scott A ; Fasano, Robert J ; tier, Tara M ; Hassan, Youssef S ; Hume, David B ; Kedar, Dhruv ; Kennedy, Colin J ; Khader, Isaac ; Koepke, Amanda ; Leibrandt, David R ; Leopardi, Holly ; Ludlow, Andrew D ; McGrew, William F ; Milner, William R ; Newbury, Nathan R ; Nicolodi, Daniele ; Oelker, Eric ; Parker, Thomas E ; Robinson, John M ; Romisch, Stefania ; Schäffer, Stefan A ; Sherman, Jeffrey A ; Sinclair, Laura C ; Sonderhouse, Lindsay ; Swann, William C ; Yao, Jian ; Ye, Jun ; Zhang, Xiaogang</creator><creatorcontrib>Boulder Atomic Clock Optical Network ; Collaboration ; Beloy, Kyle ; Bodine, Martha I ; Bothwell, Tobias ; Brewer, Samuel M ; Bromley, Sarah L ; Chen, Jwo-Sy ; Jean-Daniel Deschênes ; Diddams, Scott A ; Fasano, Robert J ; tier, Tara M ; Hassan, Youssef S ; Hume, David B ; Kedar, Dhruv ; Kennedy, Colin J ; Khader, Isaac ; Koepke, Amanda ; Leibrandt, David R ; Leopardi, Holly ; Ludlow, Andrew D ; McGrew, William F ; Milner, William R ; Newbury, Nathan R ; Nicolodi, Daniele ; Oelker, Eric ; Parker, Thomas E ; Robinson, John M ; Romisch, Stefania ; Schäffer, Stefan A ; Sherman, Jeffrey A ; Sinclair, Laura C ; Sonderhouse, Lindsay ; Swann, William C ; Yao, Jian ; Ye, Jun ; Zhang, Xiaogang</creatorcontrib><description>Atomic clocks occupy a unique position in measurement science, exhibiting higher accuracy than any other measurement standard and underpinning six out of seven base units in the SI system. By exploiting higher resonance frequencies, optical atomic clocks now achieve greater stability and lower frequency uncertainty than existing primary standards. Here, we report frequency ratios of the \(^{27}\)Al\(^+\), \(^{171}\)Yb and \(^{87}\)Sr optical clocks in Boulder, Colorado, measured across an optical network spanned by both fiber and free-space links. These ratios have been evaluated with measurement uncertainties between \(6\times10^{-18}\) and \(8\times10^{-18}\), making them the most accurate reported measurements of frequency ratios to date. This represents a critical step towards redefinition of the SI second and future applications such as relativistic geodesy and tests of fundamental physics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atomic clocks ; Frequency stability ; Geodesy ; Optical communication ; Position measurement ; Uncertainty</subject><ispartof>arXiv.org, 2020-05</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2408366003?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,36991,44569</link.rule.ids></links><search><creatorcontrib>Boulder Atomic Clock Optical Network</creatorcontrib><creatorcontrib>Collaboration</creatorcontrib><creatorcontrib>Beloy, Kyle</creatorcontrib><creatorcontrib>Bodine, Martha I</creatorcontrib><creatorcontrib>Bothwell, Tobias</creatorcontrib><creatorcontrib>Brewer, Samuel M</creatorcontrib><creatorcontrib>Bromley, Sarah L</creatorcontrib><creatorcontrib>Chen, Jwo-Sy</creatorcontrib><creatorcontrib>Jean-Daniel Deschênes</creatorcontrib><creatorcontrib>Diddams, Scott A</creatorcontrib><creatorcontrib>Fasano, Robert J</creatorcontrib><creatorcontrib>tier, Tara M</creatorcontrib><creatorcontrib>Hassan, Youssef S</creatorcontrib><creatorcontrib>Hume, David B</creatorcontrib><creatorcontrib>Kedar, Dhruv</creatorcontrib><creatorcontrib>Kennedy, Colin J</creatorcontrib><creatorcontrib>Khader, Isaac</creatorcontrib><creatorcontrib>Koepke, Amanda</creatorcontrib><creatorcontrib>Leibrandt, David R</creatorcontrib><creatorcontrib>Leopardi, Holly</creatorcontrib><creatorcontrib>Ludlow, Andrew D</creatorcontrib><creatorcontrib>McGrew, William F</creatorcontrib><creatorcontrib>Milner, William R</creatorcontrib><creatorcontrib>Newbury, Nathan R</creatorcontrib><creatorcontrib>Nicolodi, Daniele</creatorcontrib><creatorcontrib>Oelker, Eric</creatorcontrib><creatorcontrib>Parker, Thomas E</creatorcontrib><creatorcontrib>Robinson, John M</creatorcontrib><creatorcontrib>Romisch, Stefania</creatorcontrib><creatorcontrib>Schäffer, Stefan A</creatorcontrib><creatorcontrib>Sherman, Jeffrey A</creatorcontrib><creatorcontrib>Sinclair, Laura C</creatorcontrib><creatorcontrib>Sonderhouse, Lindsay</creatorcontrib><creatorcontrib>Swann, William C</creatorcontrib><creatorcontrib>Yao, Jian</creatorcontrib><creatorcontrib>Ye, Jun</creatorcontrib><creatorcontrib>Zhang, Xiaogang</creatorcontrib><title>Frequency Ratio Measurements with 18-digit Accuracy Using a Network of Optical Clocks</title><title>arXiv.org</title><description>Atomic clocks occupy a unique position in measurement science, exhibiting higher accuracy than any other measurement standard and underpinning six out of seven base units in the SI system. By exploiting higher resonance frequencies, optical atomic clocks now achieve greater stability and lower frequency uncertainty than existing primary standards. Here, we report frequency ratios of the \(^{27}\)Al\(^+\), \(^{171}\)Yb and \(^{87}\)Sr optical clocks in Boulder, Colorado, measured across an optical network spanned by both fiber and free-space links. These ratios have been evaluated with measurement uncertainties between \(6\times10^{-18}\) and \(8\times10^{-18}\), making them the most accurate reported measurements of frequency ratios to date. This represents a critical step towards redefinition of the SI second and future applications such as relativistic geodesy and tests of fundamental physics.</description><subject>Atomic clocks</subject><subject>Frequency stability</subject><subject>Geodesy</subject><subject>Optical communication</subject><subject>Position measurement</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjUELgjAYQEcQJOV_-KCzMDc1ryFJlwqizjLWtKlttm8i_fs89AM6vcN78BYkYJzHUZ4wtiIhYkspZdmOpSkPyL106j0qIz9wFV5bOCmBo1MvZTzCpP0T4jx66EZ72Es5OjGXd9SmAQFn5SfrOrA1XAavpeih6K3scEOWtehRhT-uybY83IpjNDg739BXrR2dmVXFEprzLKOU8_-qL20EQAM</recordid><startdate>20200529</startdate><enddate>20200529</enddate><creator>Boulder Atomic Clock Optical Network</creator><creator>Collaboration</creator><creator>Beloy, Kyle</creator><creator>Bodine, Martha I</creator><creator>Bothwell, Tobias</creator><creator>Brewer, Samuel M</creator><creator>Bromley, Sarah L</creator><creator>Chen, Jwo-Sy</creator><creator>Jean-Daniel Deschênes</creator><creator>Diddams, Scott A</creator><creator>Fasano, Robert J</creator><creator>tier, Tara M</creator><creator>Hassan, Youssef S</creator><creator>Hume, David B</creator><creator>Kedar, Dhruv</creator><creator>Kennedy, Colin J</creator><creator>Khader, Isaac</creator><creator>Koepke, Amanda</creator><creator>Leibrandt, David R</creator><creator>Leopardi, Holly</creator><creator>Ludlow, Andrew D</creator><creator>McGrew, William F</creator><creator>Milner, William R</creator><creator>Newbury, Nathan R</creator><creator>Nicolodi, Daniele</creator><creator>Oelker, Eric</creator><creator>Parker, Thomas E</creator><creator>Robinson, John M</creator><creator>Romisch, Stefania</creator><creator>Schäffer, Stefan A</creator><creator>Sherman, Jeffrey A</creator><creator>Sinclair, Laura C</creator><creator>Sonderhouse, Lindsay</creator><creator>Swann, William C</creator><creator>Yao, Jian</creator><creator>Ye, Jun</creator><creator>Zhang, Xiaogang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200529</creationdate><title>Frequency Ratio Measurements with 18-digit Accuracy Using a Network of Optical Clocks</title><author>Boulder Atomic Clock Optical Network ; Collaboration ; Beloy, Kyle ; Bodine, Martha I ; Bothwell, Tobias ; Brewer, Samuel M ; Bromley, Sarah L ; Chen, Jwo-Sy ; Jean-Daniel Deschênes ; Diddams, Scott A ; Fasano, Robert J ; tier, Tara M ; Hassan, Youssef S ; Hume, David B ; Kedar, Dhruv ; Kennedy, Colin J ; Khader, Isaac ; Koepke, Amanda ; Leibrandt, David R ; Leopardi, Holly ; Ludlow, Andrew D ; McGrew, William F ; Milner, William R ; Newbury, Nathan R ; Nicolodi, Daniele ; Oelker, Eric ; Parker, Thomas E ; Robinson, John M ; Romisch, Stefania ; Schäffer, Stefan A ; Sherman, Jeffrey A ; Sinclair, Laura C ; Sonderhouse, Lindsay ; Swann, William C ; Yao, Jian ; Ye, Jun ; Zhang, Xiaogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24083660033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic clocks</topic><topic>Frequency stability</topic><topic>Geodesy</topic><topic>Optical communication</topic><topic>Position measurement</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Boulder Atomic Clock Optical Network</creatorcontrib><creatorcontrib>Collaboration</creatorcontrib><creatorcontrib>Beloy, Kyle</creatorcontrib><creatorcontrib>Bodine, Martha I</creatorcontrib><creatorcontrib>Bothwell, Tobias</creatorcontrib><creatorcontrib>Brewer, Samuel M</creatorcontrib><creatorcontrib>Bromley, Sarah L</creatorcontrib><creatorcontrib>Chen, Jwo-Sy</creatorcontrib><creatorcontrib>Jean-Daniel Deschênes</creatorcontrib><creatorcontrib>Diddams, Scott A</creatorcontrib><creatorcontrib>Fasano, Robert J</creatorcontrib><creatorcontrib>tier, Tara M</creatorcontrib><creatorcontrib>Hassan, Youssef S</creatorcontrib><creatorcontrib>Hume, David B</creatorcontrib><creatorcontrib>Kedar, Dhruv</creatorcontrib><creatorcontrib>Kennedy, Colin J</creatorcontrib><creatorcontrib>Khader, Isaac</creatorcontrib><creatorcontrib>Koepke, Amanda</creatorcontrib><creatorcontrib>Leibrandt, David R</creatorcontrib><creatorcontrib>Leopardi, Holly</creatorcontrib><creatorcontrib>Ludlow, Andrew D</creatorcontrib><creatorcontrib>McGrew, William F</creatorcontrib><creatorcontrib>Milner, William R</creatorcontrib><creatorcontrib>Newbury, Nathan R</creatorcontrib><creatorcontrib>Nicolodi, Daniele</creatorcontrib><creatorcontrib>Oelker, Eric</creatorcontrib><creatorcontrib>Parker, Thomas E</creatorcontrib><creatorcontrib>Robinson, John M</creatorcontrib><creatorcontrib>Romisch, Stefania</creatorcontrib><creatorcontrib>Schäffer, Stefan A</creatorcontrib><creatorcontrib>Sherman, Jeffrey A</creatorcontrib><creatorcontrib>Sinclair, Laura C</creatorcontrib><creatorcontrib>Sonderhouse, Lindsay</creatorcontrib><creatorcontrib>Swann, William C</creatorcontrib><creatorcontrib>Yao, Jian</creatorcontrib><creatorcontrib>Ye, Jun</creatorcontrib><creatorcontrib>Zhang, Xiaogang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boulder Atomic Clock Optical Network</au><au>Collaboration</au><au>Beloy, Kyle</au><au>Bodine, Martha I</au><au>Bothwell, Tobias</au><au>Brewer, Samuel M</au><au>Bromley, Sarah L</au><au>Chen, Jwo-Sy</au><au>Jean-Daniel Deschênes</au><au>Diddams, Scott A</au><au>Fasano, Robert J</au><au>tier, Tara M</au><au>Hassan, Youssef S</au><au>Hume, David B</au><au>Kedar, Dhruv</au><au>Kennedy, Colin J</au><au>Khader, Isaac</au><au>Koepke, Amanda</au><au>Leibrandt, David R</au><au>Leopardi, Holly</au><au>Ludlow, Andrew D</au><au>McGrew, William F</au><au>Milner, William R</au><au>Newbury, Nathan R</au><au>Nicolodi, Daniele</au><au>Oelker, Eric</au><au>Parker, Thomas E</au><au>Robinson, John M</au><au>Romisch, Stefania</au><au>Schäffer, Stefan A</au><au>Sherman, Jeffrey A</au><au>Sinclair, Laura C</au><au>Sonderhouse, Lindsay</au><au>Swann, William C</au><au>Yao, Jian</au><au>Ye, Jun</au><au>Zhang, Xiaogang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Frequency Ratio Measurements with 18-digit Accuracy Using a Network of Optical Clocks</atitle><jtitle>arXiv.org</jtitle><date>2020-05-29</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Atomic clocks occupy a unique position in measurement science, exhibiting higher accuracy than any other measurement standard and underpinning six out of seven base units in the SI system. By exploiting higher resonance frequencies, optical atomic clocks now achieve greater stability and lower frequency uncertainty than existing primary standards. Here, we report frequency ratios of the \(^{27}\)Al\(^+\), \(^{171}\)Yb and \(^{87}\)Sr optical clocks in Boulder, Colorado, measured across an optical network spanned by both fiber and free-space links. These ratios have been evaluated with measurement uncertainties between \(6\times10^{-18}\) and \(8\times10^{-18}\), making them the most accurate reported measurements of frequency ratios to date. This represents a critical step towards redefinition of the SI second and future applications such as relativistic geodesy and tests of fundamental physics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2408366003
source Publicly Available Content (ProQuest)
subjects Atomic clocks
Frequency stability
Geodesy
Optical communication
Position measurement
Uncertainty
title Frequency Ratio Measurements with 18-digit Accuracy Using a Network of Optical Clocks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Frequency%20Ratio%20Measurements%20with%2018-digit%20Accuracy%20Using%20a%20Network%20of%20Optical%20Clocks&rft.jtitle=arXiv.org&rft.au=Boulder%20Atomic%20Clock%20Optical%20Network&rft.date=2020-05-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2408366003%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24083660033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2408366003&rft_id=info:pmid/&rfr_iscdi=true