Loading…
Frequency Ratio Measurements with 18-digit Accuracy Using a Network of Optical Clocks
Atomic clocks occupy a unique position in measurement science, exhibiting higher accuracy than any other measurement standard and underpinning six out of seven base units in the SI system. By exploiting higher resonance frequencies, optical atomic clocks now achieve greater stability and lower frequ...
Saved in:
Published in: | arXiv.org 2020-05 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Boulder Atomic Clock Optical Network Collaboration Beloy, Kyle Bodine, Martha I Bothwell, Tobias Brewer, Samuel M Bromley, Sarah L Chen, Jwo-Sy Jean-Daniel Deschênes Diddams, Scott A Fasano, Robert J tier, Tara M Hassan, Youssef S Hume, David B Kedar, Dhruv Kennedy, Colin J Khader, Isaac Koepke, Amanda Leibrandt, David R Leopardi, Holly Ludlow, Andrew D McGrew, William F Milner, William R Newbury, Nathan R Nicolodi, Daniele Oelker, Eric Parker, Thomas E Robinson, John M Romisch, Stefania Schäffer, Stefan A Sherman, Jeffrey A Sinclair, Laura C Sonderhouse, Lindsay Swann, William C Yao, Jian Ye, Jun Zhang, Xiaogang |
description | Atomic clocks occupy a unique position in measurement science, exhibiting higher accuracy than any other measurement standard and underpinning six out of seven base units in the SI system. By exploiting higher resonance frequencies, optical atomic clocks now achieve greater stability and lower frequency uncertainty than existing primary standards. Here, we report frequency ratios of the \(^{27}\)Al\(^+\), \(^{171}\)Yb and \(^{87}\)Sr optical clocks in Boulder, Colorado, measured across an optical network spanned by both fiber and free-space links. These ratios have been evaluated with measurement uncertainties between \(6\times10^{-18}\) and \(8\times10^{-18}\), making them the most accurate reported measurements of frequency ratios to date. This represents a critical step towards redefinition of the SI second and future applications such as relativistic geodesy and tests of fundamental physics. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2408366003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408366003</sourcerecordid><originalsourceid>FETCH-proquest_journals_24083660033</originalsourceid><addsrcrecordid>eNqNjUELgjAYQEcQJOV_-KCzMDc1ryFJlwqizjLWtKlttm8i_fs89AM6vcN78BYkYJzHUZ4wtiIhYkspZdmOpSkPyL106j0qIz9wFV5bOCmBo1MvZTzCpP0T4jx66EZ72Es5OjGXd9SmAQFn5SfrOrA1XAavpeih6K3scEOWtehRhT-uybY83IpjNDg739BXrR2dmVXFEprzLKOU8_-qL20EQAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408366003</pqid></control><display><type>article</type><title>Frequency Ratio Measurements with 18-digit Accuracy Using a Network of Optical Clocks</title><source>Publicly Available Content (ProQuest)</source><creator>Boulder Atomic Clock Optical Network ; Collaboration ; Beloy, Kyle ; Bodine, Martha I ; Bothwell, Tobias ; Brewer, Samuel M ; Bromley, Sarah L ; Chen, Jwo-Sy ; Jean-Daniel Deschênes ; Diddams, Scott A ; Fasano, Robert J ; tier, Tara M ; Hassan, Youssef S ; Hume, David B ; Kedar, Dhruv ; Kennedy, Colin J ; Khader, Isaac ; Koepke, Amanda ; Leibrandt, David R ; Leopardi, Holly ; Ludlow, Andrew D ; McGrew, William F ; Milner, William R ; Newbury, Nathan R ; Nicolodi, Daniele ; Oelker, Eric ; Parker, Thomas E ; Robinson, John M ; Romisch, Stefania ; Schäffer, Stefan A ; Sherman, Jeffrey A ; Sinclair, Laura C ; Sonderhouse, Lindsay ; Swann, William C ; Yao, Jian ; Ye, Jun ; Zhang, Xiaogang</creator><creatorcontrib>Boulder Atomic Clock Optical Network ; Collaboration ; Beloy, Kyle ; Bodine, Martha I ; Bothwell, Tobias ; Brewer, Samuel M ; Bromley, Sarah L ; Chen, Jwo-Sy ; Jean-Daniel Deschênes ; Diddams, Scott A ; Fasano, Robert J ; tier, Tara M ; Hassan, Youssef S ; Hume, David B ; Kedar, Dhruv ; Kennedy, Colin J ; Khader, Isaac ; Koepke, Amanda ; Leibrandt, David R ; Leopardi, Holly ; Ludlow, Andrew D ; McGrew, William F ; Milner, William R ; Newbury, Nathan R ; Nicolodi, Daniele ; Oelker, Eric ; Parker, Thomas E ; Robinson, John M ; Romisch, Stefania ; Schäffer, Stefan A ; Sherman, Jeffrey A ; Sinclair, Laura C ; Sonderhouse, Lindsay ; Swann, William C ; Yao, Jian ; Ye, Jun ; Zhang, Xiaogang</creatorcontrib><description>Atomic clocks occupy a unique position in measurement science, exhibiting higher accuracy than any other measurement standard and underpinning six out of seven base units in the SI system. By exploiting higher resonance frequencies, optical atomic clocks now achieve greater stability and lower frequency uncertainty than existing primary standards. Here, we report frequency ratios of the \(^{27}\)Al\(^+\), \(^{171}\)Yb and \(^{87}\)Sr optical clocks in Boulder, Colorado, measured across an optical network spanned by both fiber and free-space links. These ratios have been evaluated with measurement uncertainties between \(6\times10^{-18}\) and \(8\times10^{-18}\), making them the most accurate reported measurements of frequency ratios to date. This represents a critical step towards redefinition of the SI second and future applications such as relativistic geodesy and tests of fundamental physics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atomic clocks ; Frequency stability ; Geodesy ; Optical communication ; Position measurement ; Uncertainty</subject><ispartof>arXiv.org, 2020-05</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2408366003?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,36991,44569</link.rule.ids></links><search><creatorcontrib>Boulder Atomic Clock Optical Network</creatorcontrib><creatorcontrib>Collaboration</creatorcontrib><creatorcontrib>Beloy, Kyle</creatorcontrib><creatorcontrib>Bodine, Martha I</creatorcontrib><creatorcontrib>Bothwell, Tobias</creatorcontrib><creatorcontrib>Brewer, Samuel M</creatorcontrib><creatorcontrib>Bromley, Sarah L</creatorcontrib><creatorcontrib>Chen, Jwo-Sy</creatorcontrib><creatorcontrib>Jean-Daniel Deschênes</creatorcontrib><creatorcontrib>Diddams, Scott A</creatorcontrib><creatorcontrib>Fasano, Robert J</creatorcontrib><creatorcontrib>tier, Tara M</creatorcontrib><creatorcontrib>Hassan, Youssef S</creatorcontrib><creatorcontrib>Hume, David B</creatorcontrib><creatorcontrib>Kedar, Dhruv</creatorcontrib><creatorcontrib>Kennedy, Colin J</creatorcontrib><creatorcontrib>Khader, Isaac</creatorcontrib><creatorcontrib>Koepke, Amanda</creatorcontrib><creatorcontrib>Leibrandt, David R</creatorcontrib><creatorcontrib>Leopardi, Holly</creatorcontrib><creatorcontrib>Ludlow, Andrew D</creatorcontrib><creatorcontrib>McGrew, William F</creatorcontrib><creatorcontrib>Milner, William R</creatorcontrib><creatorcontrib>Newbury, Nathan R</creatorcontrib><creatorcontrib>Nicolodi, Daniele</creatorcontrib><creatorcontrib>Oelker, Eric</creatorcontrib><creatorcontrib>Parker, Thomas E</creatorcontrib><creatorcontrib>Robinson, John M</creatorcontrib><creatorcontrib>Romisch, Stefania</creatorcontrib><creatorcontrib>Schäffer, Stefan A</creatorcontrib><creatorcontrib>Sherman, Jeffrey A</creatorcontrib><creatorcontrib>Sinclair, Laura C</creatorcontrib><creatorcontrib>Sonderhouse, Lindsay</creatorcontrib><creatorcontrib>Swann, William C</creatorcontrib><creatorcontrib>Yao, Jian</creatorcontrib><creatorcontrib>Ye, Jun</creatorcontrib><creatorcontrib>Zhang, Xiaogang</creatorcontrib><title>Frequency Ratio Measurements with 18-digit Accuracy Using a Network of Optical Clocks</title><title>arXiv.org</title><description>Atomic clocks occupy a unique position in measurement science, exhibiting higher accuracy than any other measurement standard and underpinning six out of seven base units in the SI system. By exploiting higher resonance frequencies, optical atomic clocks now achieve greater stability and lower frequency uncertainty than existing primary standards. Here, we report frequency ratios of the \(^{27}\)Al\(^+\), \(^{171}\)Yb and \(^{87}\)Sr optical clocks in Boulder, Colorado, measured across an optical network spanned by both fiber and free-space links. These ratios have been evaluated with measurement uncertainties between \(6\times10^{-18}\) and \(8\times10^{-18}\), making them the most accurate reported measurements of frequency ratios to date. This represents a critical step towards redefinition of the SI second and future applications such as relativistic geodesy and tests of fundamental physics.</description><subject>Atomic clocks</subject><subject>Frequency stability</subject><subject>Geodesy</subject><subject>Optical communication</subject><subject>Position measurement</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjUELgjAYQEcQJOV_-KCzMDc1ryFJlwqizjLWtKlttm8i_fs89AM6vcN78BYkYJzHUZ4wtiIhYkspZdmOpSkPyL106j0qIz9wFV5bOCmBo1MvZTzCpP0T4jx66EZ72Es5OjGXd9SmAQFn5SfrOrA1XAavpeih6K3scEOWtehRhT-uybY83IpjNDg739BXrR2dmVXFEprzLKOU8_-qL20EQAM</recordid><startdate>20200529</startdate><enddate>20200529</enddate><creator>Boulder Atomic Clock Optical Network</creator><creator>Collaboration</creator><creator>Beloy, Kyle</creator><creator>Bodine, Martha I</creator><creator>Bothwell, Tobias</creator><creator>Brewer, Samuel M</creator><creator>Bromley, Sarah L</creator><creator>Chen, Jwo-Sy</creator><creator>Jean-Daniel Deschênes</creator><creator>Diddams, Scott A</creator><creator>Fasano, Robert J</creator><creator>tier, Tara M</creator><creator>Hassan, Youssef S</creator><creator>Hume, David B</creator><creator>Kedar, Dhruv</creator><creator>Kennedy, Colin J</creator><creator>Khader, Isaac</creator><creator>Koepke, Amanda</creator><creator>Leibrandt, David R</creator><creator>Leopardi, Holly</creator><creator>Ludlow, Andrew D</creator><creator>McGrew, William F</creator><creator>Milner, William R</creator><creator>Newbury, Nathan R</creator><creator>Nicolodi, Daniele</creator><creator>Oelker, Eric</creator><creator>Parker, Thomas E</creator><creator>Robinson, John M</creator><creator>Romisch, Stefania</creator><creator>Schäffer, Stefan A</creator><creator>Sherman, Jeffrey A</creator><creator>Sinclair, Laura C</creator><creator>Sonderhouse, Lindsay</creator><creator>Swann, William C</creator><creator>Yao, Jian</creator><creator>Ye, Jun</creator><creator>Zhang, Xiaogang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200529</creationdate><title>Frequency Ratio Measurements with 18-digit Accuracy Using a Network of Optical Clocks</title><author>Boulder Atomic Clock Optical Network ; Collaboration ; Beloy, Kyle ; Bodine, Martha I ; Bothwell, Tobias ; Brewer, Samuel M ; Bromley, Sarah L ; Chen, Jwo-Sy ; Jean-Daniel Deschênes ; Diddams, Scott A ; Fasano, Robert J ; tier, Tara M ; Hassan, Youssef S ; Hume, David B ; Kedar, Dhruv ; Kennedy, Colin J ; Khader, Isaac ; Koepke, Amanda ; Leibrandt, David R ; Leopardi, Holly ; Ludlow, Andrew D ; McGrew, William F ; Milner, William R ; Newbury, Nathan R ; Nicolodi, Daniele ; Oelker, Eric ; Parker, Thomas E ; Robinson, John M ; Romisch, Stefania ; Schäffer, Stefan A ; Sherman, Jeffrey A ; Sinclair, Laura C ; Sonderhouse, Lindsay ; Swann, William C ; Yao, Jian ; Ye, Jun ; Zhang, Xiaogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24083660033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic clocks</topic><topic>Frequency stability</topic><topic>Geodesy</topic><topic>Optical communication</topic><topic>Position measurement</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Boulder Atomic Clock Optical Network</creatorcontrib><creatorcontrib>Collaboration</creatorcontrib><creatorcontrib>Beloy, Kyle</creatorcontrib><creatorcontrib>Bodine, Martha I</creatorcontrib><creatorcontrib>Bothwell, Tobias</creatorcontrib><creatorcontrib>Brewer, Samuel M</creatorcontrib><creatorcontrib>Bromley, Sarah L</creatorcontrib><creatorcontrib>Chen, Jwo-Sy</creatorcontrib><creatorcontrib>Jean-Daniel Deschênes</creatorcontrib><creatorcontrib>Diddams, Scott A</creatorcontrib><creatorcontrib>Fasano, Robert J</creatorcontrib><creatorcontrib>tier, Tara M</creatorcontrib><creatorcontrib>Hassan, Youssef S</creatorcontrib><creatorcontrib>Hume, David B</creatorcontrib><creatorcontrib>Kedar, Dhruv</creatorcontrib><creatorcontrib>Kennedy, Colin J</creatorcontrib><creatorcontrib>Khader, Isaac</creatorcontrib><creatorcontrib>Koepke, Amanda</creatorcontrib><creatorcontrib>Leibrandt, David R</creatorcontrib><creatorcontrib>Leopardi, Holly</creatorcontrib><creatorcontrib>Ludlow, Andrew D</creatorcontrib><creatorcontrib>McGrew, William F</creatorcontrib><creatorcontrib>Milner, William R</creatorcontrib><creatorcontrib>Newbury, Nathan R</creatorcontrib><creatorcontrib>Nicolodi, Daniele</creatorcontrib><creatorcontrib>Oelker, Eric</creatorcontrib><creatorcontrib>Parker, Thomas E</creatorcontrib><creatorcontrib>Robinson, John M</creatorcontrib><creatorcontrib>Romisch, Stefania</creatorcontrib><creatorcontrib>Schäffer, Stefan A</creatorcontrib><creatorcontrib>Sherman, Jeffrey A</creatorcontrib><creatorcontrib>Sinclair, Laura C</creatorcontrib><creatorcontrib>Sonderhouse, Lindsay</creatorcontrib><creatorcontrib>Swann, William C</creatorcontrib><creatorcontrib>Yao, Jian</creatorcontrib><creatorcontrib>Ye, Jun</creatorcontrib><creatorcontrib>Zhang, Xiaogang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boulder Atomic Clock Optical Network</au><au>Collaboration</au><au>Beloy, Kyle</au><au>Bodine, Martha I</au><au>Bothwell, Tobias</au><au>Brewer, Samuel M</au><au>Bromley, Sarah L</au><au>Chen, Jwo-Sy</au><au>Jean-Daniel Deschênes</au><au>Diddams, Scott A</au><au>Fasano, Robert J</au><au>tier, Tara M</au><au>Hassan, Youssef S</au><au>Hume, David B</au><au>Kedar, Dhruv</au><au>Kennedy, Colin J</au><au>Khader, Isaac</au><au>Koepke, Amanda</au><au>Leibrandt, David R</au><au>Leopardi, Holly</au><au>Ludlow, Andrew D</au><au>McGrew, William F</au><au>Milner, William R</au><au>Newbury, Nathan R</au><au>Nicolodi, Daniele</au><au>Oelker, Eric</au><au>Parker, Thomas E</au><au>Robinson, John M</au><au>Romisch, Stefania</au><au>Schäffer, Stefan A</au><au>Sherman, Jeffrey A</au><au>Sinclair, Laura C</au><au>Sonderhouse, Lindsay</au><au>Swann, William C</au><au>Yao, Jian</au><au>Ye, Jun</au><au>Zhang, Xiaogang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Frequency Ratio Measurements with 18-digit Accuracy Using a Network of Optical Clocks</atitle><jtitle>arXiv.org</jtitle><date>2020-05-29</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Atomic clocks occupy a unique position in measurement science, exhibiting higher accuracy than any other measurement standard and underpinning six out of seven base units in the SI system. By exploiting higher resonance frequencies, optical atomic clocks now achieve greater stability and lower frequency uncertainty than existing primary standards. Here, we report frequency ratios of the \(^{27}\)Al\(^+\), \(^{171}\)Yb and \(^{87}\)Sr optical clocks in Boulder, Colorado, measured across an optical network spanned by both fiber and free-space links. These ratios have been evaluated with measurement uncertainties between \(6\times10^{-18}\) and \(8\times10^{-18}\), making them the most accurate reported measurements of frequency ratios to date. This represents a critical step towards redefinition of the SI second and future applications such as relativistic geodesy and tests of fundamental physics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2408366003 |
source | Publicly Available Content (ProQuest) |
subjects | Atomic clocks Frequency stability Geodesy Optical communication Position measurement Uncertainty |
title | Frequency Ratio Measurements with 18-digit Accuracy Using a Network of Optical Clocks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Frequency%20Ratio%20Measurements%20with%2018-digit%20Accuracy%20Using%20a%20Network%20of%20Optical%20Clocks&rft.jtitle=arXiv.org&rft.au=Boulder%20Atomic%20Clock%20Optical%20Network&rft.date=2020-05-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2408366003%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24083660033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2408366003&rft_id=info:pmid/&rfr_iscdi=true |