Loading…
An improved architecture for urban building extraction based on depthwise separable convolution
Accurate extraction of urban buildings is a key problem in urban remote sensing image processing. It can be applied to many kinds of urban problems, such as data statistics of urban management and smart cities. In recent years, the deep learning model based on convolutional neural network is widely...
Saved in:
Published in: | Journal of intelligent & fuzzy systems 2020-01, Vol.38 (5), p.5821-5829 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Accurate extraction of urban buildings is a key problem in urban remote sensing image processing. It can be applied to many kinds of urban problems, such as data statistics of urban management and smart cities. In recent years, the deep learning model based on convolutional neural network is widely used in the field of target recognition and semantic segmentation. In this paper, based on U-Net for urban building extraction from remote sensing image, we propose a neural network architecture for urban building extraction from remote sensing image. We use depth separable convolution to improve it and adjust the process of network super parametric optimization according to the characteristics of building. We call this new architecture XU-Net. We evaluate the performance of XU-Net through experiments with INRIA aerial image data set. The result shows that XU-Net is not only feasible but also efficient. Moreover, XU-Net reduces number of parameters 89%, from 18.8M to 2.13M, compared to classical architecture U-Net, at the same time, it guarantees the accuracy can reach 97.5%. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-179669 |