Loading…

Biogeography-based meta-heuristic optimization for resource allocation in cloud for E-health services

Technology has enabled us to carry the world on our tips. Cloud computing has majorly contributed to this by providing infrastructure services on the go using pay per use model and with high quality of services. Cloud services provide resources through various distributed datacenters and client requ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & fuzzy systems 2020-01, Vol.38 (5), p.5987-5997
Main Authors: Gupta, Punit, Goyal, Mayank Kumar, Mundra, Ankit, Tripathi, Rajan Prasad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Technology has enabled us to carry the world on our tips. Cloud computing has majorly contributed to this by providing infrastructure services on the go using pay per use model and with high quality of services. Cloud services provide resources through various distributed datacenters and client requests been fulfilled over these datacenters which act as resources. Therefore, resource allocation plays an important role in providing a high quality of service like utilization, network delay and finish time. Biogeography-based optimization (BBO) is an optimization algorithm that is an evolutionary algorithm used to find optimized solution. In this work BBO algorithm is been used for resource optimization problem in cloud environment at infrastructure as a service level. In past several task scheduling algorithms are being proposed to find a global best schedule to achieve least execution time and high performance like genetic algorithm, ACO and many more but as compared to GA, BBO has high probability to find global best solution. Existing solutions aim toward improving performance in term of power execution time, but they have not considered network performance and utilization of the systems performance parameters. Therefore, to improve the performance of cloud in network-aware environment we have proposed an efficient nature inspired BBO algorithm. Further, the proposed approach takes network overhead and utilization of the system into consideration to provide improved performance as compared to ACO, Genetic algorithm as well as with PSO.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-179685