Loading…
DESIGNS FOR ESTIMATING THE TREATMENT EFFECT IN NETWORKS WITH INTERFERENCE
In this paper, we introduce new, easily implementable designs for drawing causal inference from randomized experiments on networks with interference. Inspired by the idea of matching in observational studies, we introduce the notion of considering a treatment assignment as a “quasi-coloring” on a gr...
Saved in:
Published in: | The Annals of statistics 2020-04, Vol.48 (2), p.679-712 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c317t-158c345ca5a2060f4c60a7677df83a4e20efaac579f1cf8c528dc0a8ba774c513 |
---|---|
cites | cdi_FETCH-LOGICAL-c317t-158c345ca5a2060f4c60a7677df83a4e20efaac579f1cf8c528dc0a8ba774c513 |
container_end_page | 712 |
container_issue | 2 |
container_start_page | 679 |
container_title | The Annals of statistics |
container_volume | 48 |
creator | Jagadeesan, Ravi Pillai, Natesh S. Volfovsky, Alexander |
description | In this paper, we introduce new, easily implementable designs for drawing causal inference from randomized experiments on networks with interference. Inspired by the idea of matching in observational studies, we introduce the notion of considering a treatment assignment as a “quasi-coloring” on a graph. Our idea of a perfect quasi-coloring strives to match every treated unit on a given network with a distinct control unit that has identical number of treated and control neighbors. For a wide range of interference functions encountered in applications, we show both by theory and simulations that the classical Neymanian estimator for the direct effect has desirable properties for our designs. |
doi_str_mv | 10.1214/18-AOS1807 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2408565378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26923120</jstor_id><sourcerecordid>26923120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-158c345ca5a2060f4c60a7677df83a4e20efaac579f1cf8c528dc0a8ba774c513</originalsourceid><addsrcrecordid>eNo90EtLw0AUBeBBFKzVjXthwJ0QvfOeLEOctME2gWSkyzBOE7CoqZN04b830uLqwOHjXjgI3RJ4JJTwJ6KjpKyJBnWGZpRIHelYynM0A4ghEkzyS3Q1DDsAEDFnM5Q_mzpfFDXOygqb2ubrxObFAtulwbYyiV2bwmKTZSa1OC9wYeymrF5qvMntciqsqTJTmSI11-iicx9De3PKOXrNjE2X0apc5GmyijwjaoyI0J5x4Z1wFCR03EtwSiq17TRzvKXQds55oeKO-E57QfXWg9NvTinuBWFzdH-8uw_996EdxmbXH8LX9LKhHLSQgik9qYej8qEfhtB2zT68f7rw0xBo_qZqiG5OU0347oh3w9iHf0llTBmhwH4BrD1dkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408565378</pqid></control><display><type>article</type><title>DESIGNS FOR ESTIMATING THE TREATMENT EFFECT IN NETWORKS WITH INTERFERENCE</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Jagadeesan, Ravi ; Pillai, Natesh S. ; Volfovsky, Alexander</creator><creatorcontrib>Jagadeesan, Ravi ; Pillai, Natesh S. ; Volfovsky, Alexander</creatorcontrib><description>In this paper, we introduce new, easily implementable designs for drawing causal inference from randomized experiments on networks with interference. Inspired by the idea of matching in observational studies, we introduce the notion of considering a treatment assignment as a “quasi-coloring” on a graph. Our idea of a perfect quasi-coloring strives to match every treated unit on a given network with a distinct control unit that has identical number of treated and control neighbors. For a wide range of interference functions encountered in applications, we show both by theory and simulations that the classical Neymanian estimator for the direct effect has desirable properties for our designs.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/18-AOS1807</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Causality ; Coloring ; Econometrics ; Estimating techniques ; Graph theory ; Interference ; Probability</subject><ispartof>The Annals of statistics, 2020-04, Vol.48 (2), p.679-712</ispartof><rights>Institute of Mathematical Statistics, 2020</rights><rights>Copyright Institute of Mathematical Statistics Apr 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-158c345ca5a2060f4c60a7677df83a4e20efaac579f1cf8c528dc0a8ba774c513</citedby><cites>FETCH-LOGICAL-c317t-158c345ca5a2060f4c60a7677df83a4e20efaac579f1cf8c528dc0a8ba774c513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26923120$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26923120$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids></links><search><creatorcontrib>Jagadeesan, Ravi</creatorcontrib><creatorcontrib>Pillai, Natesh S.</creatorcontrib><creatorcontrib>Volfovsky, Alexander</creatorcontrib><title>DESIGNS FOR ESTIMATING THE TREATMENT EFFECT IN NETWORKS WITH INTERFERENCE</title><title>The Annals of statistics</title><description>In this paper, we introduce new, easily implementable designs for drawing causal inference from randomized experiments on networks with interference. Inspired by the idea of matching in observational studies, we introduce the notion of considering a treatment assignment as a “quasi-coloring” on a graph. Our idea of a perfect quasi-coloring strives to match every treated unit on a given network with a distinct control unit that has identical number of treated and control neighbors. For a wide range of interference functions encountered in applications, we show both by theory and simulations that the classical Neymanian estimator for the direct effect has desirable properties for our designs.</description><subject>Causality</subject><subject>Coloring</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>Graph theory</subject><subject>Interference</subject><subject>Probability</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo90EtLw0AUBeBBFKzVjXthwJ0QvfOeLEOctME2gWSkyzBOE7CoqZN04b830uLqwOHjXjgI3RJ4JJTwJ6KjpKyJBnWGZpRIHelYynM0A4ghEkzyS3Q1DDsAEDFnM5Q_mzpfFDXOygqb2ubrxObFAtulwbYyiV2bwmKTZSa1OC9wYeymrF5qvMntciqsqTJTmSI11-iicx9De3PKOXrNjE2X0apc5GmyijwjaoyI0J5x4Z1wFCR03EtwSiq17TRzvKXQds55oeKO-E57QfXWg9NvTinuBWFzdH-8uw_996EdxmbXH8LX9LKhHLSQgik9qYej8qEfhtB2zT68f7rw0xBo_qZqiG5OU0347oh3w9iHf0llTBmhwH4BrD1dkQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Jagadeesan, Ravi</creator><creator>Pillai, Natesh S.</creator><creator>Volfovsky, Alexander</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20200401</creationdate><title>DESIGNS FOR ESTIMATING THE TREATMENT EFFECT IN NETWORKS WITH INTERFERENCE</title><author>Jagadeesan, Ravi ; Pillai, Natesh S. ; Volfovsky, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-158c345ca5a2060f4c60a7677df83a4e20efaac579f1cf8c528dc0a8ba774c513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Causality</topic><topic>Coloring</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>Graph theory</topic><topic>Interference</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jagadeesan, Ravi</creatorcontrib><creatorcontrib>Pillai, Natesh S.</creatorcontrib><creatorcontrib>Volfovsky, Alexander</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jagadeesan, Ravi</au><au>Pillai, Natesh S.</au><au>Volfovsky, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DESIGNS FOR ESTIMATING THE TREATMENT EFFECT IN NETWORKS WITH INTERFERENCE</atitle><jtitle>The Annals of statistics</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>48</volume><issue>2</issue><spage>679</spage><epage>712</epage><pages>679-712</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>In this paper, we introduce new, easily implementable designs for drawing causal inference from randomized experiments on networks with interference. Inspired by the idea of matching in observational studies, we introduce the notion of considering a treatment assignment as a “quasi-coloring” on a graph. Our idea of a perfect quasi-coloring strives to match every treated unit on a given network with a distinct control unit that has identical number of treated and control neighbors. For a wide range of interference functions encountered in applications, we show both by theory and simulations that the classical Neymanian estimator for the direct effect has desirable properties for our designs.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/18-AOS1807</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 2020-04, Vol.48 (2), p.679-712 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_proquest_journals_2408565378 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Causality Coloring Econometrics Estimating techniques Graph theory Interference Probability |
title | DESIGNS FOR ESTIMATING THE TREATMENT EFFECT IN NETWORKS WITH INTERFERENCE |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DESIGNS%20FOR%20ESTIMATING%20THE%20TREATMENT%20EFFECT%20IN%20NETWORKS%20WITH%20INTERFERENCE&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Jagadeesan,%20Ravi&rft.date=2020-04-01&rft.volume=48&rft.issue=2&rft.spage=679&rft.epage=712&rft.pages=679-712&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/18-AOS1807&rft_dat=%3Cjstor_proqu%3E26923120%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-158c345ca5a2060f4c60a7677df83a4e20efaac579f1cf8c528dc0a8ba774c513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2408565378&rft_id=info:pmid/&rft_jstor_id=26923120&rfr_iscdi=true |