Loading…

DESIGNS FOR ESTIMATING THE TREATMENT EFFECT IN NETWORKS WITH INTERFERENCE

In this paper, we introduce new, easily implementable designs for drawing causal inference from randomized experiments on networks with interference. Inspired by the idea of matching in observational studies, we introduce the notion of considering a treatment assignment as a “quasi-coloring” on a gr...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of statistics 2020-04, Vol.48 (2), p.679-712
Main Authors: Jagadeesan, Ravi, Pillai, Natesh S., Volfovsky, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c317t-158c345ca5a2060f4c60a7677df83a4e20efaac579f1cf8c528dc0a8ba774c513
cites cdi_FETCH-LOGICAL-c317t-158c345ca5a2060f4c60a7677df83a4e20efaac579f1cf8c528dc0a8ba774c513
container_end_page 712
container_issue 2
container_start_page 679
container_title The Annals of statistics
container_volume 48
creator Jagadeesan, Ravi
Pillai, Natesh S.
Volfovsky, Alexander
description In this paper, we introduce new, easily implementable designs for drawing causal inference from randomized experiments on networks with interference. Inspired by the idea of matching in observational studies, we introduce the notion of considering a treatment assignment as a “quasi-coloring” on a graph. Our idea of a perfect quasi-coloring strives to match every treated unit on a given network with a distinct control unit that has identical number of treated and control neighbors. For a wide range of interference functions encountered in applications, we show both by theory and simulations that the classical Neymanian estimator for the direct effect has desirable properties for our designs.
doi_str_mv 10.1214/18-AOS1807
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2408565378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26923120</jstor_id><sourcerecordid>26923120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-158c345ca5a2060f4c60a7677df83a4e20efaac579f1cf8c528dc0a8ba774c513</originalsourceid><addsrcrecordid>eNo90EtLw0AUBeBBFKzVjXthwJ0QvfOeLEOctME2gWSkyzBOE7CoqZN04b830uLqwOHjXjgI3RJ4JJTwJ6KjpKyJBnWGZpRIHelYynM0A4ghEkzyS3Q1DDsAEDFnM5Q_mzpfFDXOygqb2ubrxObFAtulwbYyiV2bwmKTZSa1OC9wYeymrF5qvMntciqsqTJTmSI11-iicx9De3PKOXrNjE2X0apc5GmyijwjaoyI0J5x4Z1wFCR03EtwSiq17TRzvKXQds55oeKO-E57QfXWg9NvTinuBWFzdH-8uw_996EdxmbXH8LX9LKhHLSQgik9qYej8qEfhtB2zT68f7rw0xBo_qZqiG5OU0347oh3w9iHf0llTBmhwH4BrD1dkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408565378</pqid></control><display><type>article</type><title>DESIGNS FOR ESTIMATING THE TREATMENT EFFECT IN NETWORKS WITH INTERFERENCE</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Jagadeesan, Ravi ; Pillai, Natesh S. ; Volfovsky, Alexander</creator><creatorcontrib>Jagadeesan, Ravi ; Pillai, Natesh S. ; Volfovsky, Alexander</creatorcontrib><description>In this paper, we introduce new, easily implementable designs for drawing causal inference from randomized experiments on networks with interference. Inspired by the idea of matching in observational studies, we introduce the notion of considering a treatment assignment as a “quasi-coloring” on a graph. Our idea of a perfect quasi-coloring strives to match every treated unit on a given network with a distinct control unit that has identical number of treated and control neighbors. For a wide range of interference functions encountered in applications, we show both by theory and simulations that the classical Neymanian estimator for the direct effect has desirable properties for our designs.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/18-AOS1807</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Causality ; Coloring ; Econometrics ; Estimating techniques ; Graph theory ; Interference ; Probability</subject><ispartof>The Annals of statistics, 2020-04, Vol.48 (2), p.679-712</ispartof><rights>Institute of Mathematical Statistics, 2020</rights><rights>Copyright Institute of Mathematical Statistics Apr 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-158c345ca5a2060f4c60a7677df83a4e20efaac579f1cf8c528dc0a8ba774c513</citedby><cites>FETCH-LOGICAL-c317t-158c345ca5a2060f4c60a7677df83a4e20efaac579f1cf8c528dc0a8ba774c513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26923120$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26923120$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids></links><search><creatorcontrib>Jagadeesan, Ravi</creatorcontrib><creatorcontrib>Pillai, Natesh S.</creatorcontrib><creatorcontrib>Volfovsky, Alexander</creatorcontrib><title>DESIGNS FOR ESTIMATING THE TREATMENT EFFECT IN NETWORKS WITH INTERFERENCE</title><title>The Annals of statistics</title><description>In this paper, we introduce new, easily implementable designs for drawing causal inference from randomized experiments on networks with interference. Inspired by the idea of matching in observational studies, we introduce the notion of considering a treatment assignment as a “quasi-coloring” on a graph. Our idea of a perfect quasi-coloring strives to match every treated unit on a given network with a distinct control unit that has identical number of treated and control neighbors. For a wide range of interference functions encountered in applications, we show both by theory and simulations that the classical Neymanian estimator for the direct effect has desirable properties for our designs.</description><subject>Causality</subject><subject>Coloring</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>Graph theory</subject><subject>Interference</subject><subject>Probability</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo90EtLw0AUBeBBFKzVjXthwJ0QvfOeLEOctME2gWSkyzBOE7CoqZN04b830uLqwOHjXjgI3RJ4JJTwJ6KjpKyJBnWGZpRIHelYynM0A4ghEkzyS3Q1DDsAEDFnM5Q_mzpfFDXOygqb2ubrxObFAtulwbYyiV2bwmKTZSa1OC9wYeymrF5qvMntciqsqTJTmSI11-iicx9De3PKOXrNjE2X0apc5GmyijwjaoyI0J5x4Z1wFCR03EtwSiq17TRzvKXQds55oeKO-E57QfXWg9NvTinuBWFzdH-8uw_996EdxmbXH8LX9LKhHLSQgik9qYej8qEfhtB2zT68f7rw0xBo_qZqiG5OU0347oh3w9iHf0llTBmhwH4BrD1dkQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Jagadeesan, Ravi</creator><creator>Pillai, Natesh S.</creator><creator>Volfovsky, Alexander</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20200401</creationdate><title>DESIGNS FOR ESTIMATING THE TREATMENT EFFECT IN NETWORKS WITH INTERFERENCE</title><author>Jagadeesan, Ravi ; Pillai, Natesh S. ; Volfovsky, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-158c345ca5a2060f4c60a7677df83a4e20efaac579f1cf8c528dc0a8ba774c513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Causality</topic><topic>Coloring</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>Graph theory</topic><topic>Interference</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jagadeesan, Ravi</creatorcontrib><creatorcontrib>Pillai, Natesh S.</creatorcontrib><creatorcontrib>Volfovsky, Alexander</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jagadeesan, Ravi</au><au>Pillai, Natesh S.</au><au>Volfovsky, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DESIGNS FOR ESTIMATING THE TREATMENT EFFECT IN NETWORKS WITH INTERFERENCE</atitle><jtitle>The Annals of statistics</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>48</volume><issue>2</issue><spage>679</spage><epage>712</epage><pages>679-712</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>In this paper, we introduce new, easily implementable designs for drawing causal inference from randomized experiments on networks with interference. Inspired by the idea of matching in observational studies, we introduce the notion of considering a treatment assignment as a “quasi-coloring” on a graph. Our idea of a perfect quasi-coloring strives to match every treated unit on a given network with a distinct control unit that has identical number of treated and control neighbors. For a wide range of interference functions encountered in applications, we show both by theory and simulations that the classical Neymanian estimator for the direct effect has desirable properties for our designs.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/18-AOS1807</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2020-04, Vol.48 (2), p.679-712
issn 0090-5364
2168-8966
language eng
recordid cdi_proquest_journals_2408565378
source JSTOR Archival Journals and Primary Sources Collection
subjects Causality
Coloring
Econometrics
Estimating techniques
Graph theory
Interference
Probability
title DESIGNS FOR ESTIMATING THE TREATMENT EFFECT IN NETWORKS WITH INTERFERENCE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DESIGNS%20FOR%20ESTIMATING%20THE%20TREATMENT%20EFFECT%20IN%20NETWORKS%20WITH%20INTERFERENCE&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Jagadeesan,%20Ravi&rft.date=2020-04-01&rft.volume=48&rft.issue=2&rft.spage=679&rft.epage=712&rft.pages=679-712&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/18-AOS1807&rft_dat=%3Cjstor_proqu%3E26923120%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-158c345ca5a2060f4c60a7677df83a4e20efaac579f1cf8c528dc0a8ba774c513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2408565378&rft_id=info:pmid/&rft_jstor_id=26923120&rfr_iscdi=true