Loading…

An ultraweak formulation of the Reissner–Mindlin plate bending model and DPG approximation

We develop and analyze an ultraweak variational formulation of the Reissner–Mindlin plate bending model both for the clamped and the soft simply supported cases. We prove well-posedness of the formulation, uniformly with respect to the plate thickness t . We also prove weak convergence of the Reissn...

Full description

Saved in:
Bibliographic Details
Published in:Numerische Mathematik 2020-06, Vol.145 (2), p.313-344
Main Authors: Führer, Thomas, Heuer, Norbert, Sayas, Francisco-Javier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-32c5394fdadf3956ed1619c1c0c8097a8d4a00a4a9660bda2f0a6eb62912c6853
cites cdi_FETCH-LOGICAL-c319t-32c5394fdadf3956ed1619c1c0c8097a8d4a00a4a9660bda2f0a6eb62912c6853
container_end_page 344
container_issue 2
container_start_page 313
container_title Numerische Mathematik
container_volume 145
creator Führer, Thomas
Heuer, Norbert
Sayas, Francisco-Javier
description We develop and analyze an ultraweak variational formulation of the Reissner–Mindlin plate bending model both for the clamped and the soft simply supported cases. We prove well-posedness of the formulation, uniformly with respect to the plate thickness t . We also prove weak convergence of the Reissner–Mindlin solution to the solution of the corresponding Kirchhoff–Love model when t → 0 . Based on the ultraweak formulation, we introduce a discretization of the discontinuous Petrov–Galerkin type with optimal test functions (DPG) and prove its uniform quasi-optimal convergence. Our theory covers the case of non-convex polygonal plates. A numerical experiment for some smooth model solutions with fixed load confirms that our scheme is locking free.
doi_str_mv 10.1007/s00211-020-01116-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409214517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409214517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-32c5394fdadf3956ed1619c1c0c8097a8d4a00a4a9660bda2f0a6eb62912c6853</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKf_gKeA5-p7aZouxzF1ChNFFDwIIWvS2dmlM2lRb_4P_of-JcZV8ObpvcP3Fx9CDhGOESA_CQAMMQEGCSCiSGCLDEDyLEkZz7bjD0wmmZQPu2QvhCUA5oLjgDyOHe3q1utXq59p2fhVV-u2ahxtSto-WXprqxCc9V8fn1eVM3Xl6DoqLJ1bZyq3oKvG2JpqZ-jpzZTq9do3b9Vqk7FPdkpdB3vwe4fk_vzsbnKRzK6nl5PxLClSlG2cWGSp5KXRpkxlJqxBgbLAAooRyFyPDNcAmmspBMyNZiVoYeeCSWSFGGXpkBz1ubH7pbOhVcum8y5WKsZBMuQZ5lHFelXhmxC8LdXax6H-XSGoH4qqp6giRbWhqCCa0t4UotgtrP-L_sf1DYo9dgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409214517</pqid></control><display><type>article</type><title>An ultraweak formulation of the Reissner–Mindlin plate bending model and DPG approximation</title><source>Springer Link</source><creator>Führer, Thomas ; Heuer, Norbert ; Sayas, Francisco-Javier</creator><creatorcontrib>Führer, Thomas ; Heuer, Norbert ; Sayas, Francisco-Javier</creatorcontrib><description>We develop and analyze an ultraweak variational formulation of the Reissner–Mindlin plate bending model both for the clamped and the soft simply supported cases. We prove well-posedness of the formulation, uniformly with respect to the plate thickness t . We also prove weak convergence of the Reissner–Mindlin solution to the solution of the corresponding Kirchhoff–Love model when t → 0 . Based on the ultraweak formulation, we introduce a discretization of the discontinuous Petrov–Galerkin type with optimal test functions (DPG) and prove its uniform quasi-optimal convergence. Our theory covers the case of non-convex polygonal plates. A numerical experiment for some smooth model solutions with fixed load confirms that our scheme is locking free.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-020-01116-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bending ; Convergence ; Galerkin method ; Locking ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mindlin plates ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical ; Well posed problems</subject><ispartof>Numerische Mathematik, 2020-06, Vol.145 (2), p.313-344</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-32c5394fdadf3956ed1619c1c0c8097a8d4a00a4a9660bda2f0a6eb62912c6853</citedby><cites>FETCH-LOGICAL-c319t-32c5394fdadf3956ed1619c1c0c8097a8d4a00a4a9660bda2f0a6eb62912c6853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Führer, Thomas</creatorcontrib><creatorcontrib>Heuer, Norbert</creatorcontrib><creatorcontrib>Sayas, Francisco-Javier</creatorcontrib><title>An ultraweak formulation of the Reissner–Mindlin plate bending model and DPG approximation</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>We develop and analyze an ultraweak variational formulation of the Reissner–Mindlin plate bending model both for the clamped and the soft simply supported cases. We prove well-posedness of the formulation, uniformly with respect to the plate thickness t . We also prove weak convergence of the Reissner–Mindlin solution to the solution of the corresponding Kirchhoff–Love model when t → 0 . Based on the ultraweak formulation, we introduce a discretization of the discontinuous Petrov–Galerkin type with optimal test functions (DPG) and prove its uniform quasi-optimal convergence. Our theory covers the case of non-convex polygonal plates. A numerical experiment for some smooth model solutions with fixed load confirms that our scheme is locking free.</description><subject>Bending</subject><subject>Convergence</subject><subject>Galerkin method</subject><subject>Locking</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mindlin plates</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Well posed problems</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4MoOKf_gKeA5-p7aZouxzF1ChNFFDwIIWvS2dmlM2lRb_4P_of-JcZV8ObpvcP3Fx9CDhGOESA_CQAMMQEGCSCiSGCLDEDyLEkZz7bjD0wmmZQPu2QvhCUA5oLjgDyOHe3q1utXq59p2fhVV-u2ahxtSto-WXprqxCc9V8fn1eVM3Xl6DoqLJ1bZyq3oKvG2JpqZ-jpzZTq9do3b9Vqk7FPdkpdB3vwe4fk_vzsbnKRzK6nl5PxLClSlG2cWGSp5KXRpkxlJqxBgbLAAooRyFyPDNcAmmspBMyNZiVoYeeCSWSFGGXpkBz1ubH7pbOhVcum8y5WKsZBMuQZ5lHFelXhmxC8LdXax6H-XSGoH4qqp6giRbWhqCCa0t4UotgtrP-L_sf1DYo9dgA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Führer, Thomas</creator><creator>Heuer, Norbert</creator><creator>Sayas, Francisco-Javier</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200601</creationdate><title>An ultraweak formulation of the Reissner–Mindlin plate bending model and DPG approximation</title><author>Führer, Thomas ; Heuer, Norbert ; Sayas, Francisco-Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-32c5394fdadf3956ed1619c1c0c8097a8d4a00a4a9660bda2f0a6eb62912c6853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bending</topic><topic>Convergence</topic><topic>Galerkin method</topic><topic>Locking</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mindlin plates</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Führer, Thomas</creatorcontrib><creatorcontrib>Heuer, Norbert</creatorcontrib><creatorcontrib>Sayas, Francisco-Javier</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Führer, Thomas</au><au>Heuer, Norbert</au><au>Sayas, Francisco-Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ultraweak formulation of the Reissner–Mindlin plate bending model and DPG approximation</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>145</volume><issue>2</issue><spage>313</spage><epage>344</epage><pages>313-344</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>We develop and analyze an ultraweak variational formulation of the Reissner–Mindlin plate bending model both for the clamped and the soft simply supported cases. We prove well-posedness of the formulation, uniformly with respect to the plate thickness t . We also prove weak convergence of the Reissner–Mindlin solution to the solution of the corresponding Kirchhoff–Love model when t → 0 . Based on the ultraweak formulation, we introduce a discretization of the discontinuous Petrov–Galerkin type with optimal test functions (DPG) and prove its uniform quasi-optimal convergence. Our theory covers the case of non-convex polygonal plates. A numerical experiment for some smooth model solutions with fixed load confirms that our scheme is locking free.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-020-01116-0</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2020-06, Vol.145 (2), p.313-344
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_2409214517
source Springer Link
subjects Bending
Convergence
Galerkin method
Locking
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mindlin plates
Numerical Analysis
Numerical and Computational Physics
Simulation
Theoretical
Well posed problems
title An ultraweak formulation of the Reissner–Mindlin plate bending model and DPG approximation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ultraweak%20formulation%20of%20the%20Reissner%E2%80%93Mindlin%20plate%20bending%20model%20and%20DPG%20approximation&rft.jtitle=Numerische%20Mathematik&rft.au=F%C3%BChrer,%20Thomas&rft.date=2020-06-01&rft.volume=145&rft.issue=2&rft.spage=313&rft.epage=344&rft.pages=313-344&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-020-01116-0&rft_dat=%3Cproquest_cross%3E2409214517%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-32c5394fdadf3956ed1619c1c0c8097a8d4a00a4a9660bda2f0a6eb62912c6853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2409214517&rft_id=info:pmid/&rfr_iscdi=true