Loading…

Electronic Properties of Silicene Films Subjected to Neutron Transmutation Doping

The radiation doping of single-crystal silicon with phosphorus retains the structure of the sample, reduces internal stresses, and increases the lifetime of minority charge carriers. The study is concerned with the effect of phosphorus additives on the electronic properties of silicene. The electron...

Full description

Saved in:
Bibliographic Details
Published in:Semiconductors (Woodbury, N.Y.) N.Y.), 2020-06, Vol.54 (6), p.641-649
Main Authors: Galashev, A. E., Vorob’ev, A. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The radiation doping of single-crystal silicon with phosphorus retains the structure of the sample, reduces internal stresses, and increases the lifetime of minority charge carriers. The study is concerned with the effect of phosphorus additives on the electronic properties of silicene. The electron density-of-states spectra of a phosphorus-doped single layer and 2 × 2 bilayer silicene on a graphite substrate are calculated by the quantum-mechanical method. The carbon substrate imparts semiconductor properties to silicene due to p – p hybridization. Doping with phosphorus can retain or modify the metal properties gained by silicene. The position of phosphorus dopant atoms in silicene influences the semiconductor–conductor transition. The theoretical specific capacity of a phosphorus-doped silicene electrode decreases, and the electrode becomes less efficient for application in lithium-ion batteries. However, the increase in the conductivity is favorable for use of this material in solar cells.
ISSN:1063-7826
1090-6479
DOI:10.1134/S1063782620060068