Loading…

Scatter Correction for Spectral CT Using a Primary Modulator Mask

The problem of scattered radiation correction in computed tomography (CT) is well known because scatter induces a bias, a loss of contrast and artifacts. Numerous strategies have been proposed in conventional CT (using energy-integrating detectors) but the problem is still open in the field of spect...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2020-06, Vol.39 (6), p.2267-2276
Main Authors: Pivot, Odran, Fournier, Clarisse, Tabary, Joachim, Letang, Jean Michel, Rit, Simon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-16feef1fe8424b1afbac28d903bc3d3cd6f53e0160909adcb22c09642aeeca9f3
cites cdi_FETCH-LOGICAL-c381t-16feef1fe8424b1afbac28d903bc3d3cd6f53e0160909adcb22c09642aeeca9f3
container_end_page 2276
container_issue 6
container_start_page 2267
container_title IEEE transactions on medical imaging
container_volume 39
creator Pivot, Odran
Fournier, Clarisse
Tabary, Joachim
Letang, Jean Michel
Rit, Simon
description The problem of scattered radiation correction in computed tomography (CT) is well known because scatter induces a bias, a loss of contrast and artifacts. Numerous strategies have been proposed in conventional CT (using energy-integrating detectors) but the problem is still open in the field of spectral CT, a new imaging technique based on energy-selective photon counting detectors. The aim of the present study is to introduce a scatter correction method adapted to multi-energy imaging and based on the use of a primary modulator mask. The main contributions are a correction matrix, which compensates for the effect of the mask, a scatter model based on B-splines and a cost function based on the mask structures and robust to the object structures. The performances of the method have been evaluated on both simulated and experimental data. The mean relative error was reduced from 20% in the lower energy-bins without correction to 4% with the proposed technique, which is close to the error caused by statistical noise.
doi_str_mv 10.1109/TMI.2020.2970296
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2409384796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8974391</ieee_id><sourcerecordid>2350340076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-16feef1fe8424b1afbac28d903bc3d3cd6f53e0160909adcb22c09642aeeca9f3</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhkVpSdw090KhLPSSHtYdjbQfOhrTNAGbFOJAb0KrHbWbri1H2g3030dmXR9yGmbmmeGdeRn7yGHOOahvm_XtHAFhjqoCVOUbNuNFUedYyF9v2QywqnOAEs_Z-xgfAbgsQJ2xc4HAOcpyxhb31gwDhWzpQyA7dH6XOR-y-31Kgumz5SZ7iN3ud2ayn6HbmvAvW_t27M2QqLWJfz-wd870kS6P8YI9XH_fLG_y1d2P2-VilVtR8yHnpSNy3FEtUTbcuMZYrFsForGiFbYtXSEIeAkKlGltg2hBlRINkTXKiQv2ddr7x_R6P0nR3nT6ZrHShxqkg7hS-MwTezWx--CfRoqD3nbRUt-bHfkxahQFCAlQlQn98gp99GPYpUs0SlCilpU6UDBRNvgYA7mTAg76YIVOVuiDFfpoRRr5fFw8NltqTwP_f5-ATxPQEdGpXatKCsXFCw4Jisw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409384796</pqid></control><display><type>article</type><title>Scatter Correction for Spectral CT Using a Primary Modulator Mask</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pivot, Odran ; Fournier, Clarisse ; Tabary, Joachim ; Letang, Jean Michel ; Rit, Simon</creator><creatorcontrib>Pivot, Odran ; Fournier, Clarisse ; Tabary, Joachim ; Letang, Jean Michel ; Rit, Simon</creatorcontrib><description>The problem of scattered radiation correction in computed tomography (CT) is well known because scatter induces a bias, a loss of contrast and artifacts. Numerous strategies have been proposed in conventional CT (using energy-integrating detectors) but the problem is still open in the field of spectral CT, a new imaging technique based on energy-selective photon counting detectors. The aim of the present study is to introduce a scatter correction method adapted to multi-energy imaging and based on the use of a primary modulator mask. The main contributions are a correction matrix, which compensates for the effect of the mask, a scatter model based on B-splines and a cost function based on the mask structures and robust to the object structures. The performances of the method have been evaluated on both simulated and experimental data. The mean relative error was reduced from 20% in the lower energy-bins without correction to 4% with the proposed technique, which is close to the error caused by statistical noise.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2020.2970296</identifier><identifier>PMID: 32011246</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computed tomography ; Computer Science ; Computer simulation ; Cost function ; Detectors ; Energy ; Error correction ; Error reduction ; Estimation ; Imaging techniques ; Mathematical model ; Medical Imaging ; Modulation ; Photon counting detectors ; Photonics ; primary modulator mask ; Radiation ; scatter correction ; Scattering ; spectral CT ; Spline functions</subject><ispartof>IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.2267-2276</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-16feef1fe8424b1afbac28d903bc3d3cd6f53e0160909adcb22c09642aeeca9f3</citedby><cites>FETCH-LOGICAL-c381t-16feef1fe8424b1afbac28d903bc3d3cd6f53e0160909adcb22c09642aeeca9f3</cites><orcidid>0000-0003-2530-1013 ; 0000-0003-0164-9656 ; 0000-0003-2583-782X ; 0000-0001-9642-581X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8974391$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32011246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02461992$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pivot, Odran</creatorcontrib><creatorcontrib>Fournier, Clarisse</creatorcontrib><creatorcontrib>Tabary, Joachim</creatorcontrib><creatorcontrib>Letang, Jean Michel</creatorcontrib><creatorcontrib>Rit, Simon</creatorcontrib><title>Scatter Correction for Spectral CT Using a Primary Modulator Mask</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>The problem of scattered radiation correction in computed tomography (CT) is well known because scatter induces a bias, a loss of contrast and artifacts. Numerous strategies have been proposed in conventional CT (using energy-integrating detectors) but the problem is still open in the field of spectral CT, a new imaging technique based on energy-selective photon counting detectors. The aim of the present study is to introduce a scatter correction method adapted to multi-energy imaging and based on the use of a primary modulator mask. The main contributions are a correction matrix, which compensates for the effect of the mask, a scatter model based on B-splines and a cost function based on the mask structures and robust to the object structures. The performances of the method have been evaluated on both simulated and experimental data. The mean relative error was reduced from 20% in the lower energy-bins without correction to 4% with the proposed technique, which is close to the error caused by statistical noise.</description><subject>Computed tomography</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Cost function</subject><subject>Detectors</subject><subject>Energy</subject><subject>Error correction</subject><subject>Error reduction</subject><subject>Estimation</subject><subject>Imaging techniques</subject><subject>Mathematical model</subject><subject>Medical Imaging</subject><subject>Modulation</subject><subject>Photon counting detectors</subject><subject>Photonics</subject><subject>primary modulator mask</subject><subject>Radiation</subject><subject>scatter correction</subject><subject>Scattering</subject><subject>spectral CT</subject><subject>Spline functions</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU1rGzEQhkVpSdw090KhLPSSHtYdjbQfOhrTNAGbFOJAb0KrHbWbri1H2g3030dmXR9yGmbmmeGdeRn7yGHOOahvm_XtHAFhjqoCVOUbNuNFUedYyF9v2QywqnOAEs_Z-xgfAbgsQJ2xc4HAOcpyxhb31gwDhWzpQyA7dH6XOR-y-31Kgumz5SZ7iN3ud2ayn6HbmvAvW_t27M2QqLWJfz-wd870kS6P8YI9XH_fLG_y1d2P2-VilVtR8yHnpSNy3FEtUTbcuMZYrFsForGiFbYtXSEIeAkKlGltg2hBlRINkTXKiQv2ddr7x_R6P0nR3nT6ZrHShxqkg7hS-MwTezWx--CfRoqD3nbRUt-bHfkxahQFCAlQlQn98gp99GPYpUs0SlCilpU6UDBRNvgYA7mTAg76YIVOVuiDFfpoRRr5fFw8NltqTwP_f5-ATxPQEdGpXatKCsXFCw4Jisw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Pivot, Odran</creator><creator>Fournier, Clarisse</creator><creator>Tabary, Joachim</creator><creator>Letang, Jean Michel</creator><creator>Rit, Simon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2530-1013</orcidid><orcidid>https://orcid.org/0000-0003-0164-9656</orcidid><orcidid>https://orcid.org/0000-0003-2583-782X</orcidid><orcidid>https://orcid.org/0000-0001-9642-581X</orcidid></search><sort><creationdate>20200601</creationdate><title>Scatter Correction for Spectral CT Using a Primary Modulator Mask</title><author>Pivot, Odran ; Fournier, Clarisse ; Tabary, Joachim ; Letang, Jean Michel ; Rit, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-16feef1fe8424b1afbac28d903bc3d3cd6f53e0160909adcb22c09642aeeca9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computed tomography</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Cost function</topic><topic>Detectors</topic><topic>Energy</topic><topic>Error correction</topic><topic>Error reduction</topic><topic>Estimation</topic><topic>Imaging techniques</topic><topic>Mathematical model</topic><topic>Medical Imaging</topic><topic>Modulation</topic><topic>Photon counting detectors</topic><topic>Photonics</topic><topic>primary modulator mask</topic><topic>Radiation</topic><topic>scatter correction</topic><topic>Scattering</topic><topic>spectral CT</topic><topic>Spline functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Pivot, Odran</creatorcontrib><creatorcontrib>Fournier, Clarisse</creatorcontrib><creatorcontrib>Tabary, Joachim</creatorcontrib><creatorcontrib>Letang, Jean Michel</creatorcontrib><creatorcontrib>Rit, Simon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pivot, Odran</au><au>Fournier, Clarisse</au><au>Tabary, Joachim</au><au>Letang, Jean Michel</au><au>Rit, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scatter Correction for Spectral CT Using a Primary Modulator Mask</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>39</volume><issue>6</issue><spage>2267</spage><epage>2276</epage><pages>2267-2276</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>The problem of scattered radiation correction in computed tomography (CT) is well known because scatter induces a bias, a loss of contrast and artifacts. Numerous strategies have been proposed in conventional CT (using energy-integrating detectors) but the problem is still open in the field of spectral CT, a new imaging technique based on energy-selective photon counting detectors. The aim of the present study is to introduce a scatter correction method adapted to multi-energy imaging and based on the use of a primary modulator mask. The main contributions are a correction matrix, which compensates for the effect of the mask, a scatter model based on B-splines and a cost function based on the mask structures and robust to the object structures. The performances of the method have been evaluated on both simulated and experimental data. The mean relative error was reduced from 20% in the lower energy-bins without correction to 4% with the proposed technique, which is close to the error caused by statistical noise.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32011246</pmid><doi>10.1109/TMI.2020.2970296</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2530-1013</orcidid><orcidid>https://orcid.org/0000-0003-0164-9656</orcidid><orcidid>https://orcid.org/0000-0003-2583-782X</orcidid><orcidid>https://orcid.org/0000-0001-9642-581X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.2267-2276
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_journals_2409384796
source IEEE Electronic Library (IEL) Journals
subjects Computed tomography
Computer Science
Computer simulation
Cost function
Detectors
Energy
Error correction
Error reduction
Estimation
Imaging techniques
Mathematical model
Medical Imaging
Modulation
Photon counting detectors
Photonics
primary modulator mask
Radiation
scatter correction
Scattering
spectral CT
Spline functions
title Scatter Correction for Spectral CT Using a Primary Modulator Mask
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scatter%20Correction%20for%20Spectral%20CT%20Using%20a%20Primary%20Modulator%20Mask&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Pivot,%20Odran&rft.date=2020-06-01&rft.volume=39&rft.issue=6&rft.spage=2267&rft.epage=2276&rft.pages=2267-2276&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2020.2970296&rft_dat=%3Cproquest_hal_p%3E2350340076%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-16feef1fe8424b1afbac28d903bc3d3cd6f53e0160909adcb22c09642aeeca9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2409384796&rft_id=info:pmid/32011246&rft_ieee_id=8974391&rfr_iscdi=true