Loading…
Scatter Correction for Spectral CT Using a Primary Modulator Mask
The problem of scattered radiation correction in computed tomography (CT) is well known because scatter induces a bias, a loss of contrast and artifacts. Numerous strategies have been proposed in conventional CT (using energy-integrating detectors) but the problem is still open in the field of spect...
Saved in:
Published in: | IEEE transactions on medical imaging 2020-06, Vol.39 (6), p.2267-2276 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-16feef1fe8424b1afbac28d903bc3d3cd6f53e0160909adcb22c09642aeeca9f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-16feef1fe8424b1afbac28d903bc3d3cd6f53e0160909adcb22c09642aeeca9f3 |
container_end_page | 2276 |
container_issue | 6 |
container_start_page | 2267 |
container_title | IEEE transactions on medical imaging |
container_volume | 39 |
creator | Pivot, Odran Fournier, Clarisse Tabary, Joachim Letang, Jean Michel Rit, Simon |
description | The problem of scattered radiation correction in computed tomography (CT) is well known because scatter induces a bias, a loss of contrast and artifacts. Numerous strategies have been proposed in conventional CT (using energy-integrating detectors) but the problem is still open in the field of spectral CT, a new imaging technique based on energy-selective photon counting detectors. The aim of the present study is to introduce a scatter correction method adapted to multi-energy imaging and based on the use of a primary modulator mask. The main contributions are a correction matrix, which compensates for the effect of the mask, a scatter model based on B-splines and a cost function based on the mask structures and robust to the object structures. The performances of the method have been evaluated on both simulated and experimental data. The mean relative error was reduced from 20% in the lower energy-bins without correction to 4% with the proposed technique, which is close to the error caused by statistical noise. |
doi_str_mv | 10.1109/TMI.2020.2970296 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2409384796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8974391</ieee_id><sourcerecordid>2350340076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-16feef1fe8424b1afbac28d903bc3d3cd6f53e0160909adcb22c09642aeeca9f3</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhkVpSdw090KhLPSSHtYdjbQfOhrTNAGbFOJAb0KrHbWbri1H2g3030dmXR9yGmbmmeGdeRn7yGHOOahvm_XtHAFhjqoCVOUbNuNFUedYyF9v2QywqnOAEs_Z-xgfAbgsQJ2xc4HAOcpyxhb31gwDhWzpQyA7dH6XOR-y-31Kgumz5SZ7iN3ud2ayn6HbmvAvW_t27M2QqLWJfz-wd870kS6P8YI9XH_fLG_y1d2P2-VilVtR8yHnpSNy3FEtUTbcuMZYrFsForGiFbYtXSEIeAkKlGltg2hBlRINkTXKiQv2ddr7x_R6P0nR3nT6ZrHShxqkg7hS-MwTezWx--CfRoqD3nbRUt-bHfkxahQFCAlQlQn98gp99GPYpUs0SlCilpU6UDBRNvgYA7mTAg76YIVOVuiDFfpoRRr5fFw8NltqTwP_f5-ATxPQEdGpXatKCsXFCw4Jisw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409384796</pqid></control><display><type>article</type><title>Scatter Correction for Spectral CT Using a Primary Modulator Mask</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pivot, Odran ; Fournier, Clarisse ; Tabary, Joachim ; Letang, Jean Michel ; Rit, Simon</creator><creatorcontrib>Pivot, Odran ; Fournier, Clarisse ; Tabary, Joachim ; Letang, Jean Michel ; Rit, Simon</creatorcontrib><description>The problem of scattered radiation correction in computed tomography (CT) is well known because scatter induces a bias, a loss of contrast and artifacts. Numerous strategies have been proposed in conventional CT (using energy-integrating detectors) but the problem is still open in the field of spectral CT, a new imaging technique based on energy-selective photon counting detectors. The aim of the present study is to introduce a scatter correction method adapted to multi-energy imaging and based on the use of a primary modulator mask. The main contributions are a correction matrix, which compensates for the effect of the mask, a scatter model based on B-splines and a cost function based on the mask structures and robust to the object structures. The performances of the method have been evaluated on both simulated and experimental data. The mean relative error was reduced from 20% in the lower energy-bins without correction to 4% with the proposed technique, which is close to the error caused by statistical noise.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2020.2970296</identifier><identifier>PMID: 32011246</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computed tomography ; Computer Science ; Computer simulation ; Cost function ; Detectors ; Energy ; Error correction ; Error reduction ; Estimation ; Imaging techniques ; Mathematical model ; Medical Imaging ; Modulation ; Photon counting detectors ; Photonics ; primary modulator mask ; Radiation ; scatter correction ; Scattering ; spectral CT ; Spline functions</subject><ispartof>IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.2267-2276</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-16feef1fe8424b1afbac28d903bc3d3cd6f53e0160909adcb22c09642aeeca9f3</citedby><cites>FETCH-LOGICAL-c381t-16feef1fe8424b1afbac28d903bc3d3cd6f53e0160909adcb22c09642aeeca9f3</cites><orcidid>0000-0003-2530-1013 ; 0000-0003-0164-9656 ; 0000-0003-2583-782X ; 0000-0001-9642-581X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8974391$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32011246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02461992$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pivot, Odran</creatorcontrib><creatorcontrib>Fournier, Clarisse</creatorcontrib><creatorcontrib>Tabary, Joachim</creatorcontrib><creatorcontrib>Letang, Jean Michel</creatorcontrib><creatorcontrib>Rit, Simon</creatorcontrib><title>Scatter Correction for Spectral CT Using a Primary Modulator Mask</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>The problem of scattered radiation correction in computed tomography (CT) is well known because scatter induces a bias, a loss of contrast and artifacts. Numerous strategies have been proposed in conventional CT (using energy-integrating detectors) but the problem is still open in the field of spectral CT, a new imaging technique based on energy-selective photon counting detectors. The aim of the present study is to introduce a scatter correction method adapted to multi-energy imaging and based on the use of a primary modulator mask. The main contributions are a correction matrix, which compensates for the effect of the mask, a scatter model based on B-splines and a cost function based on the mask structures and robust to the object structures. The performances of the method have been evaluated on both simulated and experimental data. The mean relative error was reduced from 20% in the lower energy-bins without correction to 4% with the proposed technique, which is close to the error caused by statistical noise.</description><subject>Computed tomography</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Cost function</subject><subject>Detectors</subject><subject>Energy</subject><subject>Error correction</subject><subject>Error reduction</subject><subject>Estimation</subject><subject>Imaging techniques</subject><subject>Mathematical model</subject><subject>Medical Imaging</subject><subject>Modulation</subject><subject>Photon counting detectors</subject><subject>Photonics</subject><subject>primary modulator mask</subject><subject>Radiation</subject><subject>scatter correction</subject><subject>Scattering</subject><subject>spectral CT</subject><subject>Spline functions</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU1rGzEQhkVpSdw090KhLPSSHtYdjbQfOhrTNAGbFOJAb0KrHbWbri1H2g3030dmXR9yGmbmmeGdeRn7yGHOOahvm_XtHAFhjqoCVOUbNuNFUedYyF9v2QywqnOAEs_Z-xgfAbgsQJ2xc4HAOcpyxhb31gwDhWzpQyA7dH6XOR-y-31Kgumz5SZ7iN3ud2ayn6HbmvAvW_t27M2QqLWJfz-wd870kS6P8YI9XH_fLG_y1d2P2-VilVtR8yHnpSNy3FEtUTbcuMZYrFsForGiFbYtXSEIeAkKlGltg2hBlRINkTXKiQv2ddr7x_R6P0nR3nT6ZrHShxqkg7hS-MwTezWx--CfRoqD3nbRUt-bHfkxahQFCAlQlQn98gp99GPYpUs0SlCilpU6UDBRNvgYA7mTAg76YIVOVuiDFfpoRRr5fFw8NltqTwP_f5-ATxPQEdGpXatKCsXFCw4Jisw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Pivot, Odran</creator><creator>Fournier, Clarisse</creator><creator>Tabary, Joachim</creator><creator>Letang, Jean Michel</creator><creator>Rit, Simon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2530-1013</orcidid><orcidid>https://orcid.org/0000-0003-0164-9656</orcidid><orcidid>https://orcid.org/0000-0003-2583-782X</orcidid><orcidid>https://orcid.org/0000-0001-9642-581X</orcidid></search><sort><creationdate>20200601</creationdate><title>Scatter Correction for Spectral CT Using a Primary Modulator Mask</title><author>Pivot, Odran ; Fournier, Clarisse ; Tabary, Joachim ; Letang, Jean Michel ; Rit, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-16feef1fe8424b1afbac28d903bc3d3cd6f53e0160909adcb22c09642aeeca9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computed tomography</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Cost function</topic><topic>Detectors</topic><topic>Energy</topic><topic>Error correction</topic><topic>Error reduction</topic><topic>Estimation</topic><topic>Imaging techniques</topic><topic>Mathematical model</topic><topic>Medical Imaging</topic><topic>Modulation</topic><topic>Photon counting detectors</topic><topic>Photonics</topic><topic>primary modulator mask</topic><topic>Radiation</topic><topic>scatter correction</topic><topic>Scattering</topic><topic>spectral CT</topic><topic>Spline functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Pivot, Odran</creatorcontrib><creatorcontrib>Fournier, Clarisse</creatorcontrib><creatorcontrib>Tabary, Joachim</creatorcontrib><creatorcontrib>Letang, Jean Michel</creatorcontrib><creatorcontrib>Rit, Simon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pivot, Odran</au><au>Fournier, Clarisse</au><au>Tabary, Joachim</au><au>Letang, Jean Michel</au><au>Rit, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scatter Correction for Spectral CT Using a Primary Modulator Mask</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>39</volume><issue>6</issue><spage>2267</spage><epage>2276</epage><pages>2267-2276</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>The problem of scattered radiation correction in computed tomography (CT) is well known because scatter induces a bias, a loss of contrast and artifacts. Numerous strategies have been proposed in conventional CT (using energy-integrating detectors) but the problem is still open in the field of spectral CT, a new imaging technique based on energy-selective photon counting detectors. The aim of the present study is to introduce a scatter correction method adapted to multi-energy imaging and based on the use of a primary modulator mask. The main contributions are a correction matrix, which compensates for the effect of the mask, a scatter model based on B-splines and a cost function based on the mask structures and robust to the object structures. The performances of the method have been evaluated on both simulated and experimental data. The mean relative error was reduced from 20% in the lower energy-bins without correction to 4% with the proposed technique, which is close to the error caused by statistical noise.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32011246</pmid><doi>10.1109/TMI.2020.2970296</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2530-1013</orcidid><orcidid>https://orcid.org/0000-0003-0164-9656</orcidid><orcidid>https://orcid.org/0000-0003-2583-782X</orcidid><orcidid>https://orcid.org/0000-0001-9642-581X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.2267-2276 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_journals_2409384796 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Computed tomography Computer Science Computer simulation Cost function Detectors Energy Error correction Error reduction Estimation Imaging techniques Mathematical model Medical Imaging Modulation Photon counting detectors Photonics primary modulator mask Radiation scatter correction Scattering spectral CT Spline functions |
title | Scatter Correction for Spectral CT Using a Primary Modulator Mask |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scatter%20Correction%20for%20Spectral%20CT%20Using%20a%20Primary%20Modulator%20Mask&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Pivot,%20Odran&rft.date=2020-06-01&rft.volume=39&rft.issue=6&rft.spage=2267&rft.epage=2276&rft.pages=2267-2276&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2020.2970296&rft_dat=%3Cproquest_hal_p%3E2350340076%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-16feef1fe8424b1afbac28d903bc3d3cd6f53e0160909adcb22c09642aeeca9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2409384796&rft_id=info:pmid/32011246&rft_ieee_id=8974391&rfr_iscdi=true |