Loading…

Magnetohydrodynamic Richtmyer–Meshkov instability under an arbitrarily oriented magnetic field

The effect of an initially uniform magnetic field of arbitrary orientation on the Richtmyer–Meshkov instability in Hall-magnetohydrodynamics (MHD) and ideal MHD is considered. Attention is restricted to the case where the initial density interface has a single-mode sinusoidal perturbation in amplitu...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2020-06, Vol.27 (6)
Main Authors: Shen, Naijian, Wheatley, Vincent, Pullin, D. I., Samtaney, Ravi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of an initially uniform magnetic field of arbitrary orientation on the Richtmyer–Meshkov instability in Hall-magnetohydrodynamics (MHD) and ideal MHD is considered. Attention is restricted to the case where the initial density interface has a single-mode sinusoidal perturbation in amplitude and is accelerated by a shock traveling perpendicular to the interface. An incompressible Hall-MHD model for this flow is developed by solving the relevant impulse-driven linearized initial value problem. The ideal MHD theory is naturally obtained by taking the limit of vanishing ion skin depth. It is shown that the out-of-plane magnetic field component normal to both the impulse and the interface perturbation does not affect the evolution of the flow. For all field orientations other than strictly out-of-plane, the growth of interface perturbations is suppressed. However, the suppression is most effective for near tangential fields but becomes less effective with increasing ion skin depth and Larmor radius. The modeled suppression mechanism is transport of vorticity along magnetic field lines via Alfvén fronts in ideal MHD, and via a dispersive wave system in Hall-MHD. Oscillation of the interface growth rate is caused by a continuous phase change of the induced velocities at the interface due to vorticity transport parallel to the perturbation direction in ideal MHD, while it can also result from interfacial vorticity production associated with the ion cyclotron effect in Hall-MHD with a finite Larmor radius. The limiting flow behavior of a large ion-skin-depth is explored. To assess the accuracy and appropriateness of the incompressible model, its ideal MHD predictions are compared to the results of the corresponding shock-driven nonlinear compressible simulations.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.5142042