Loading…
Recent Progress on Semi-transparent Perovskite Solar Cell for Building-integrated Photovoltaics
The electricity consumption of buildings is tremendous; moreover, a huge amount of electricity is lost during distribution. Taking away this consumption can significantly reduce energy demand and greenhouse effect gas emission. One of the low-cost and renewable solutions to this issue is to install...
Saved in:
Published in: | Chemical research in Chinese universities 2020-06, Vol.36 (3), p.366-376 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The electricity consumption of buildings is tremendous; moreover, a huge amount of electricity is lost during distribution. Taking away this consumption can significantly reduce energy demand and greenhouse effect gas emission. One of the low-cost and renewable solutions to this issue is to install photovoltaic panels on the buildings themselves, namely, building-integrated photovoltaics(BIPVs). Using this technology, power generation roofs, windows, and facades can harvest solar radiation and convert to electricity for building power consumption. Semi-transparent perovskite solar cells(ST-PSCs) have attracted tremendous attention for the power generation windows, due to the excellent photoelectric properties, versatile fabrication methods, bandgap tunability, and flexibility. Here, an overview is provided on the recent progress of ST-PSCs for BIPV, which mainly focuses on the control of perovskite morphology, optical engineering for an efficient and semi-transparent ST-PSC. We also summarize recent development on various transparent electrodes and present prospects and challenges for the commercialization of ST-PSCs. |
---|---|
ISSN: | 1005-9040 2210-3171 |
DOI: | 10.1007/s40242-020-0105-3 |