Loading…
A novel predicted replication strategy in cloud storage
Data replication is widely used in cloud storage and data grid to improve the parallel service efficiency and the performance of system, which can promote the file availability and system load balancing, reducing the response time with multiple copies. But high volume of big data gives a new, enormo...
Saved in:
Published in: | The Journal of supercomputing 2020-07, Vol.76 (7), p.4838-4856 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-f5d683492d4f0e8caec2bb78c5db8c8f20ed29fa95b6e1f9b26b694b65f8fdd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-f5d683492d4f0e8caec2bb78c5db8c8f20ed29fa95b6e1f9b26b694b65f8fdd3 |
container_end_page | 4856 |
container_issue | 7 |
container_start_page | 4838 |
container_title | The Journal of supercomputing |
container_volume | 76 |
creator | He, Li Qian, Zhicheng Shang, Fengjun |
description | Data replication is widely used in cloud storage and data grid to improve the parallel service efficiency and the performance of system, which can promote the file availability and system load balancing, reducing the response time with multiple copies. But high volume of big data gives a new, enormous and rigorous challenge to data storage and business access of cloud storage, specially to the quality of cloud services. In this paper, a novel dynamic predicted replication strategy (DPRS) combining with the access frequency of files and prediction method is proposed to predict the future access of each file and calculating the optional number of replicas based on the real access and future access periodically. The experiment results show that DPRS can availably decrease the response time of a file request and reduce the additional cost of the cloud storage system simultaneously. |
doi_str_mv | 10.1007/s11227-018-2647-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409875088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409875088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f5d683492d4f0e8caec2bb78c5db8c8f20ed29fa95b6e1f9b26b694b65f8fdd3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcF19GbNK8uh8EXDLiZfcizdKhNTTrC_Hs7VHDl6sLhfOfCh9A9gUcCIJ8KIZRKDERhKpjE7AKtCJc1BqbYJVpBQwErzug1uinlAACslvUKyU01pO_QV2MOvnNT8FUOY985M3VpqMqUzRTaU9UNlevT0c9JyqYNt-gqmr6Eu9-7RvuX5_32De8-Xt-3mx12NRETjtwLVbOGehYhKGeCo9ZK5bi3yqlIIXjaRNNwKwKJjaXCioZZwaOK3tdr9LDMjjl9HUOZ9CEd8zB_1JRBoyQHpeYWWVoup1JyiHrM3afJJ01An_XoRY-e9eizHs1mhi5MmbtDG_Lf8v_QD91IaDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409875088</pqid></control><display><type>article</type><title>A novel predicted replication strategy in cloud storage</title><source>Springer Nature</source><creator>He, Li ; Qian, Zhicheng ; Shang, Fengjun</creator><creatorcontrib>He, Li ; Qian, Zhicheng ; Shang, Fengjun</creatorcontrib><description>Data replication is widely used in cloud storage and data grid to improve the parallel service efficiency and the performance of system, which can promote the file availability and system load balancing, reducing the response time with multiple copies. But high volume of big data gives a new, enormous and rigorous challenge to data storage and business access of cloud storage, specially to the quality of cloud services. In this paper, a novel dynamic predicted replication strategy (DPRS) combining with the access frequency of files and prediction method is proposed to predict the future access of each file and calculating the optional number of replicas based on the real access and future access periodically. The experiment results show that DPRS can availably decrease the response time of a file request and reduce the additional cost of the cloud storage system simultaneously.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-018-2647-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cloud computing ; Compilers ; Computer Science ; Data replication ; Data storage ; Interpreters ; Processor Architectures ; Programming Languages ; Response time</subject><ispartof>The Journal of supercomputing, 2020-07, Vol.76 (7), p.4838-4856</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f5d683492d4f0e8caec2bb78c5db8c8f20ed29fa95b6e1f9b26b694b65f8fdd3</citedby><cites>FETCH-LOGICAL-c316t-f5d683492d4f0e8caec2bb78c5db8c8f20ed29fa95b6e1f9b26b694b65f8fdd3</cites><orcidid>0000-0002-8253-537X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>He, Li</creatorcontrib><creatorcontrib>Qian, Zhicheng</creatorcontrib><creatorcontrib>Shang, Fengjun</creatorcontrib><title>A novel predicted replication strategy in cloud storage</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Data replication is widely used in cloud storage and data grid to improve the parallel service efficiency and the performance of system, which can promote the file availability and system load balancing, reducing the response time with multiple copies. But high volume of big data gives a new, enormous and rigorous challenge to data storage and business access of cloud storage, specially to the quality of cloud services. In this paper, a novel dynamic predicted replication strategy (DPRS) combining with the access frequency of files and prediction method is proposed to predict the future access of each file and calculating the optional number of replicas based on the real access and future access periodically. The experiment results show that DPRS can availably decrease the response time of a file request and reduce the additional cost of the cloud storage system simultaneously.</description><subject>Cloud computing</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Data replication</subject><subject>Data storage</subject><subject>Interpreters</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Response time</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcF19GbNK8uh8EXDLiZfcizdKhNTTrC_Hs7VHDl6sLhfOfCh9A9gUcCIJ8KIZRKDERhKpjE7AKtCJc1BqbYJVpBQwErzug1uinlAACslvUKyU01pO_QV2MOvnNT8FUOY985M3VpqMqUzRTaU9UNlevT0c9JyqYNt-gqmr6Eu9-7RvuX5_32De8-Xt-3mx12NRETjtwLVbOGehYhKGeCo9ZK5bi3yqlIIXjaRNNwKwKJjaXCioZZwaOK3tdr9LDMjjl9HUOZ9CEd8zB_1JRBoyQHpeYWWVoup1JyiHrM3afJJ01An_XoRY-e9eizHs1mhi5MmbtDG_Lf8v_QD91IaDs</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>He, Li</creator><creator>Qian, Zhicheng</creator><creator>Shang, Fengjun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8253-537X</orcidid></search><sort><creationdate>20200701</creationdate><title>A novel predicted replication strategy in cloud storage</title><author>He, Li ; Qian, Zhicheng ; Shang, Fengjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f5d683492d4f0e8caec2bb78c5db8c8f20ed29fa95b6e1f9b26b694b65f8fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cloud computing</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Data replication</topic><topic>Data storage</topic><topic>Interpreters</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Response time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Li</creatorcontrib><creatorcontrib>Qian, Zhicheng</creatorcontrib><creatorcontrib>Shang, Fengjun</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Li</au><au>Qian, Zhicheng</au><au>Shang, Fengjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel predicted replication strategy in cloud storage</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>76</volume><issue>7</issue><spage>4838</spage><epage>4856</epage><pages>4838-4856</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Data replication is widely used in cloud storage and data grid to improve the parallel service efficiency and the performance of system, which can promote the file availability and system load balancing, reducing the response time with multiple copies. But high volume of big data gives a new, enormous and rigorous challenge to data storage and business access of cloud storage, specially to the quality of cloud services. In this paper, a novel dynamic predicted replication strategy (DPRS) combining with the access frequency of files and prediction method is proposed to predict the future access of each file and calculating the optional number of replicas based on the real access and future access periodically. The experiment results show that DPRS can availably decrease the response time of a file request and reduce the additional cost of the cloud storage system simultaneously.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-018-2647-4</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8253-537X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2020-07, Vol.76 (7), p.4838-4856 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_2409875088 |
source | Springer Nature |
subjects | Cloud computing Compilers Computer Science Data replication Data storage Interpreters Processor Architectures Programming Languages Response time |
title | A novel predicted replication strategy in cloud storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20predicted%20replication%20strategy%20in%20cloud%20storage&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=He,%20Li&rft.date=2020-07-01&rft.volume=76&rft.issue=7&rft.spage=4838&rft.epage=4856&rft.pages=4838-4856&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-018-2647-4&rft_dat=%3Cproquest_cross%3E2409875088%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-f5d683492d4f0e8caec2bb78c5db8c8f20ed29fa95b6e1f9b26b694b65f8fdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2409875088&rft_id=info:pmid/&rfr_iscdi=true |