Loading…

A novel predicted replication strategy in cloud storage

Data replication is widely used in cloud storage and data grid to improve the parallel service efficiency and the performance of system, which can promote the file availability and system load balancing, reducing the response time with multiple copies. But high volume of big data gives a new, enormo...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing 2020-07, Vol.76 (7), p.4838-4856
Main Authors: He, Li, Qian, Zhicheng, Shang, Fengjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-f5d683492d4f0e8caec2bb78c5db8c8f20ed29fa95b6e1f9b26b694b65f8fdd3
cites cdi_FETCH-LOGICAL-c316t-f5d683492d4f0e8caec2bb78c5db8c8f20ed29fa95b6e1f9b26b694b65f8fdd3
container_end_page 4856
container_issue 7
container_start_page 4838
container_title The Journal of supercomputing
container_volume 76
creator He, Li
Qian, Zhicheng
Shang, Fengjun
description Data replication is widely used in cloud storage and data grid to improve the parallel service efficiency and the performance of system, which can promote the file availability and system load balancing, reducing the response time with multiple copies. But high volume of big data gives a new, enormous and rigorous challenge to data storage and business access of cloud storage, specially to the quality of cloud services. In this paper, a novel dynamic predicted replication strategy (DPRS) combining with the access frequency of files and prediction method is proposed to predict the future access of each file and calculating the optional number of replicas based on the real access and future access periodically. The experiment results show that DPRS can availably decrease the response time of a file request and reduce the additional cost of the cloud storage system simultaneously.
doi_str_mv 10.1007/s11227-018-2647-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409875088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409875088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f5d683492d4f0e8caec2bb78c5db8c8f20ed29fa95b6e1f9b26b694b65f8fdd3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcF19GbNK8uh8EXDLiZfcizdKhNTTrC_Hs7VHDl6sLhfOfCh9A9gUcCIJ8KIZRKDERhKpjE7AKtCJc1BqbYJVpBQwErzug1uinlAACslvUKyU01pO_QV2MOvnNT8FUOY985M3VpqMqUzRTaU9UNlevT0c9JyqYNt-gqmr6Eu9-7RvuX5_32De8-Xt-3mx12NRETjtwLVbOGehYhKGeCo9ZK5bi3yqlIIXjaRNNwKwKJjaXCioZZwaOK3tdr9LDMjjl9HUOZ9CEd8zB_1JRBoyQHpeYWWVoup1JyiHrM3afJJ01An_XoRY-e9eizHs1mhi5MmbtDG_Lf8v_QD91IaDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409875088</pqid></control><display><type>article</type><title>A novel predicted replication strategy in cloud storage</title><source>Springer Nature</source><creator>He, Li ; Qian, Zhicheng ; Shang, Fengjun</creator><creatorcontrib>He, Li ; Qian, Zhicheng ; Shang, Fengjun</creatorcontrib><description>Data replication is widely used in cloud storage and data grid to improve the parallel service efficiency and the performance of system, which can promote the file availability and system load balancing, reducing the response time with multiple copies. But high volume of big data gives a new, enormous and rigorous challenge to data storage and business access of cloud storage, specially to the quality of cloud services. In this paper, a novel dynamic predicted replication strategy (DPRS) combining with the access frequency of files and prediction method is proposed to predict the future access of each file and calculating the optional number of replicas based on the real access and future access periodically. The experiment results show that DPRS can availably decrease the response time of a file request and reduce the additional cost of the cloud storage system simultaneously.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-018-2647-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cloud computing ; Compilers ; Computer Science ; Data replication ; Data storage ; Interpreters ; Processor Architectures ; Programming Languages ; Response time</subject><ispartof>The Journal of supercomputing, 2020-07, Vol.76 (7), p.4838-4856</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f5d683492d4f0e8caec2bb78c5db8c8f20ed29fa95b6e1f9b26b694b65f8fdd3</citedby><cites>FETCH-LOGICAL-c316t-f5d683492d4f0e8caec2bb78c5db8c8f20ed29fa95b6e1f9b26b694b65f8fdd3</cites><orcidid>0000-0002-8253-537X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>He, Li</creatorcontrib><creatorcontrib>Qian, Zhicheng</creatorcontrib><creatorcontrib>Shang, Fengjun</creatorcontrib><title>A novel predicted replication strategy in cloud storage</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Data replication is widely used in cloud storage and data grid to improve the parallel service efficiency and the performance of system, which can promote the file availability and system load balancing, reducing the response time with multiple copies. But high volume of big data gives a new, enormous and rigorous challenge to data storage and business access of cloud storage, specially to the quality of cloud services. In this paper, a novel dynamic predicted replication strategy (DPRS) combining with the access frequency of files and prediction method is proposed to predict the future access of each file and calculating the optional number of replicas based on the real access and future access periodically. The experiment results show that DPRS can availably decrease the response time of a file request and reduce the additional cost of the cloud storage system simultaneously.</description><subject>Cloud computing</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Data replication</subject><subject>Data storage</subject><subject>Interpreters</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Response time</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcF19GbNK8uh8EXDLiZfcizdKhNTTrC_Hs7VHDl6sLhfOfCh9A9gUcCIJ8KIZRKDERhKpjE7AKtCJc1BqbYJVpBQwErzug1uinlAACslvUKyU01pO_QV2MOvnNT8FUOY985M3VpqMqUzRTaU9UNlevT0c9JyqYNt-gqmr6Eu9-7RvuX5_32De8-Xt-3mx12NRETjtwLVbOGehYhKGeCo9ZK5bi3yqlIIXjaRNNwKwKJjaXCioZZwaOK3tdr9LDMjjl9HUOZ9CEd8zB_1JRBoyQHpeYWWVoup1JyiHrM3afJJ01An_XoRY-e9eizHs1mhi5MmbtDG_Lf8v_QD91IaDs</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>He, Li</creator><creator>Qian, Zhicheng</creator><creator>Shang, Fengjun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8253-537X</orcidid></search><sort><creationdate>20200701</creationdate><title>A novel predicted replication strategy in cloud storage</title><author>He, Li ; Qian, Zhicheng ; Shang, Fengjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f5d683492d4f0e8caec2bb78c5db8c8f20ed29fa95b6e1f9b26b694b65f8fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cloud computing</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Data replication</topic><topic>Data storage</topic><topic>Interpreters</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Response time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Li</creatorcontrib><creatorcontrib>Qian, Zhicheng</creatorcontrib><creatorcontrib>Shang, Fengjun</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Li</au><au>Qian, Zhicheng</au><au>Shang, Fengjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel predicted replication strategy in cloud storage</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>76</volume><issue>7</issue><spage>4838</spage><epage>4856</epage><pages>4838-4856</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Data replication is widely used in cloud storage and data grid to improve the parallel service efficiency and the performance of system, which can promote the file availability and system load balancing, reducing the response time with multiple copies. But high volume of big data gives a new, enormous and rigorous challenge to data storage and business access of cloud storage, specially to the quality of cloud services. In this paper, a novel dynamic predicted replication strategy (DPRS) combining with the access frequency of files and prediction method is proposed to predict the future access of each file and calculating the optional number of replicas based on the real access and future access periodically. The experiment results show that DPRS can availably decrease the response time of a file request and reduce the additional cost of the cloud storage system simultaneously.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-018-2647-4</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8253-537X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2020-07, Vol.76 (7), p.4838-4856
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2409875088
source Springer Nature
subjects Cloud computing
Compilers
Computer Science
Data replication
Data storage
Interpreters
Processor Architectures
Programming Languages
Response time
title A novel predicted replication strategy in cloud storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20predicted%20replication%20strategy%20in%20cloud%20storage&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=He,%20Li&rft.date=2020-07-01&rft.volume=76&rft.issue=7&rft.spage=4838&rft.epage=4856&rft.pages=4838-4856&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-018-2647-4&rft_dat=%3Cproquest_cross%3E2409875088%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-f5d683492d4f0e8caec2bb78c5db8c8f20ed29fa95b6e1f9b26b694b65f8fdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2409875088&rft_id=info:pmid/&rfr_iscdi=true