Loading…
Efficient Bayesian shape-restricted function estimation with constrained Gaussian process priors
This article revisits the problem of Bayesian shape-restricted inference in the light of a recently developed approximate Gaussian process that admits an equivalent formulation of the shape constraints in terms of the basis coefficients. We propose a strategy to efficiently sample from the resulting...
Saved in:
Published in: | Statistics and computing 2020-07, Vol.30 (4), p.839-853 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-46f49c0868c0b68ab68451b8cd9bf2ea641e84e853f9c57dc822d7b399dc1b7e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-46f49c0868c0b68ab68451b8cd9bf2ea641e84e853f9c57dc822d7b399dc1b7e3 |
container_end_page | 853 |
container_issue | 4 |
container_start_page | 839 |
container_title | Statistics and computing |
container_volume | 30 |
creator | Ray, Pallavi Pati, Debdeep Bhattacharya, Anirban |
description | This article revisits the problem of Bayesian shape-restricted inference in the light of a recently developed approximate Gaussian process that admits an equivalent formulation of the shape constraints in terms of the basis coefficients. We propose a strategy to efficiently sample from the resulting constrained posterior by absorbing a
smooth relaxation
of the constraint in the likelihood and using circulant embedding techniques to sample from the unconstrained
modified prior
. We additionally pay careful attention to mitigate the computational complexity arising from updating hyperparameters within the covariance kernel of the Gaussian process. The developed algorithm is shown to be accurate and highly efficient in simulated and real data examples. |
doi_str_mv | 10.1007/s11222-020-09922-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409875299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409875299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-46f49c0868c0b68ab68451b8cd9bf2ea641e84e853f9c57dc822d7b399dc1b7e3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkz26So5ZahYIXPcdsNrEpNluTXaTf3rQVvHkYZhh-b97wELomcEsAxF0mhFKKgQIGpfbTCZqQWjBMmKhP0QRUA5gRwc_RRc5rAEIaxifofe59sMHFoXowO5eDiVVema3DyeUhBTu4rvJjtEPoY1VWYWMO43cYVpXtY4FMiAVamDEf5NvUW5dz6aFP-RKdefOZ3dVvn6K3x_nr7AkvXxbPs_sltoyoAfPGc2VBNtJC20hTiteklbZTrafONJw4yZ2smVe2Fp2VlHaiZUp1lrTCsSm6Od4t9l9jeVSv-zHFYqkpByVFTZUqFD1SNvU5J-d1-XJj0k4T0Psk9TFJXZLUhyQ1FBE7inKB44dLf6f_Uf0ALhh4VQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409875299</pqid></control><display><type>article</type><title>Efficient Bayesian shape-restricted function estimation with constrained Gaussian process priors</title><source>Springer Link</source><creator>Ray, Pallavi ; Pati, Debdeep ; Bhattacharya, Anirban</creator><creatorcontrib>Ray, Pallavi ; Pati, Debdeep ; Bhattacharya, Anirban</creatorcontrib><description>This article revisits the problem of Bayesian shape-restricted inference in the light of a recently developed approximate Gaussian process that admits an equivalent formulation of the shape constraints in terms of the basis coefficients. We propose a strategy to efficiently sample from the resulting constrained posterior by absorbing a
smooth relaxation
of the constraint in the likelihood and using circulant embedding techniques to sample from the unconstrained
modified prior
. We additionally pay careful attention to mitigate the computational complexity arising from updating hyperparameters within the covariance kernel of the Gaussian process. The developed algorithm is shown to be accurate and highly efficient in simulated and real data examples.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-020-09922-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Bayesian analysis ; Computer simulation ; Constraints ; Covariance ; Gaussian process ; Mathematics and Statistics ; Probability and Statistics in Computer Science ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs</subject><ispartof>Statistics and computing, 2020-07, Vol.30 (4), p.839-853</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-46f49c0868c0b68ab68451b8cd9bf2ea641e84e853f9c57dc822d7b399dc1b7e3</citedby><cites>FETCH-LOGICAL-c319t-46f49c0868c0b68ab68451b8cd9bf2ea641e84e853f9c57dc822d7b399dc1b7e3</cites><orcidid>0000-0001-6197-2055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Ray, Pallavi</creatorcontrib><creatorcontrib>Pati, Debdeep</creatorcontrib><creatorcontrib>Bhattacharya, Anirban</creatorcontrib><title>Efficient Bayesian shape-restricted function estimation with constrained Gaussian process priors</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>This article revisits the problem of Bayesian shape-restricted inference in the light of a recently developed approximate Gaussian process that admits an equivalent formulation of the shape constraints in terms of the basis coefficients. We propose a strategy to efficiently sample from the resulting constrained posterior by absorbing a
smooth relaxation
of the constraint in the likelihood and using circulant embedding techniques to sample from the unconstrained
modified prior
. We additionally pay careful attention to mitigate the computational complexity arising from updating hyperparameters within the covariance kernel of the Gaussian process. The developed algorithm is shown to be accurate and highly efficient in simulated and real data examples.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Constraints</subject><subject>Covariance</subject><subject>Gaussian process</subject><subject>Mathematics and Statistics</subject><subject>Probability and Statistics in Computer Science</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkz26So5ZahYIXPcdsNrEpNluTXaTf3rQVvHkYZhh-b97wELomcEsAxF0mhFKKgQIGpfbTCZqQWjBMmKhP0QRUA5gRwc_RRc5rAEIaxifofe59sMHFoXowO5eDiVVema3DyeUhBTu4rvJjtEPoY1VWYWMO43cYVpXtY4FMiAVamDEf5NvUW5dz6aFP-RKdefOZ3dVvn6K3x_nr7AkvXxbPs_sltoyoAfPGc2VBNtJC20hTiteklbZTrafONJw4yZ2smVe2Fp2VlHaiZUp1lrTCsSm6Od4t9l9jeVSv-zHFYqkpByVFTZUqFD1SNvU5J-d1-XJj0k4T0Psk9TFJXZLUhyQ1FBE7inKB44dLf6f_Uf0ALhh4VQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Ray, Pallavi</creator><creator>Pati, Debdeep</creator><creator>Bhattacharya, Anirban</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6197-2055</orcidid></search><sort><creationdate>20200701</creationdate><title>Efficient Bayesian shape-restricted function estimation with constrained Gaussian process priors</title><author>Ray, Pallavi ; Pati, Debdeep ; Bhattacharya, Anirban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-46f49c0868c0b68ab68451b8cd9bf2ea641e84e853f9c57dc822d7b399dc1b7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Constraints</topic><topic>Covariance</topic><topic>Gaussian process</topic><topic>Mathematics and Statistics</topic><topic>Probability and Statistics in Computer Science</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, Pallavi</creatorcontrib><creatorcontrib>Pati, Debdeep</creatorcontrib><creatorcontrib>Bhattacharya, Anirban</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ray, Pallavi</au><au>Pati, Debdeep</au><au>Bhattacharya, Anirban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Bayesian shape-restricted function estimation with constrained Gaussian process priors</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>839</spage><epage>853</epage><pages>839-853</pages><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>This article revisits the problem of Bayesian shape-restricted inference in the light of a recently developed approximate Gaussian process that admits an equivalent formulation of the shape constraints in terms of the basis coefficients. We propose a strategy to efficiently sample from the resulting constrained posterior by absorbing a
smooth relaxation
of the constraint in the likelihood and using circulant embedding techniques to sample from the unconstrained
modified prior
. We additionally pay careful attention to mitigate the computational complexity arising from updating hyperparameters within the covariance kernel of the Gaussian process. The developed algorithm is shown to be accurate and highly efficient in simulated and real data examples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-020-09922-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6197-2055</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-3174 |
ispartof | Statistics and computing, 2020-07, Vol.30 (4), p.839-853 |
issn | 0960-3174 1573-1375 |
language | eng |
recordid | cdi_proquest_journals_2409875299 |
source | Springer Link |
subjects | Algorithms Artificial Intelligence Bayesian analysis Computer simulation Constraints Covariance Gaussian process Mathematics and Statistics Probability and Statistics in Computer Science Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs |
title | Efficient Bayesian shape-restricted function estimation with constrained Gaussian process priors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A04%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Bayesian%20shape-restricted%20function%20estimation%20with%20constrained%20Gaussian%20process%20priors&rft.jtitle=Statistics%20and%20computing&rft.au=Ray,%20Pallavi&rft.date=2020-07-01&rft.volume=30&rft.issue=4&rft.spage=839&rft.epage=853&rft.pages=839-853&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-020-09922-0&rft_dat=%3Cproquest_cross%3E2409875299%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-46f49c0868c0b68ab68451b8cd9bf2ea641e84e853f9c57dc822d7b399dc1b7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2409875299&rft_id=info:pmid/&rfr_iscdi=true |