Loading…

Efficient Bayesian shape-restricted function estimation with constrained Gaussian process priors

This article revisits the problem of Bayesian shape-restricted inference in the light of a recently developed approximate Gaussian process that admits an equivalent formulation of the shape constraints in terms of the basis coefficients. We propose a strategy to efficiently sample from the resulting...

Full description

Saved in:
Bibliographic Details
Published in:Statistics and computing 2020-07, Vol.30 (4), p.839-853
Main Authors: Ray, Pallavi, Pati, Debdeep, Bhattacharya, Anirban
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-46f49c0868c0b68ab68451b8cd9bf2ea641e84e853f9c57dc822d7b399dc1b7e3
cites cdi_FETCH-LOGICAL-c319t-46f49c0868c0b68ab68451b8cd9bf2ea641e84e853f9c57dc822d7b399dc1b7e3
container_end_page 853
container_issue 4
container_start_page 839
container_title Statistics and computing
container_volume 30
creator Ray, Pallavi
Pati, Debdeep
Bhattacharya, Anirban
description This article revisits the problem of Bayesian shape-restricted inference in the light of a recently developed approximate Gaussian process that admits an equivalent formulation of the shape constraints in terms of the basis coefficients. We propose a strategy to efficiently sample from the resulting constrained posterior by absorbing a smooth relaxation of the constraint in the likelihood and using circulant embedding techniques to sample from the unconstrained modified prior . We additionally pay careful attention to mitigate the computational complexity arising from updating hyperparameters within the covariance kernel of the Gaussian process. The developed algorithm is shown to be accurate and highly efficient in simulated and real data examples.
doi_str_mv 10.1007/s11222-020-09922-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409875299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409875299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-46f49c0868c0b68ab68451b8cd9bf2ea641e84e853f9c57dc822d7b399dc1b7e3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkz26So5ZahYIXPcdsNrEpNluTXaTf3rQVvHkYZhh-b97wELomcEsAxF0mhFKKgQIGpfbTCZqQWjBMmKhP0QRUA5gRwc_RRc5rAEIaxifofe59sMHFoXowO5eDiVVema3DyeUhBTu4rvJjtEPoY1VWYWMO43cYVpXtY4FMiAVamDEf5NvUW5dz6aFP-RKdefOZ3dVvn6K3x_nr7AkvXxbPs_sltoyoAfPGc2VBNtJC20hTiteklbZTrafONJw4yZ2smVe2Fp2VlHaiZUp1lrTCsSm6Od4t9l9jeVSv-zHFYqkpByVFTZUqFD1SNvU5J-d1-XJj0k4T0Psk9TFJXZLUhyQ1FBE7inKB44dLf6f_Uf0ALhh4VQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409875299</pqid></control><display><type>article</type><title>Efficient Bayesian shape-restricted function estimation with constrained Gaussian process priors</title><source>Springer Link</source><creator>Ray, Pallavi ; Pati, Debdeep ; Bhattacharya, Anirban</creator><creatorcontrib>Ray, Pallavi ; Pati, Debdeep ; Bhattacharya, Anirban</creatorcontrib><description>This article revisits the problem of Bayesian shape-restricted inference in the light of a recently developed approximate Gaussian process that admits an equivalent formulation of the shape constraints in terms of the basis coefficients. We propose a strategy to efficiently sample from the resulting constrained posterior by absorbing a smooth relaxation of the constraint in the likelihood and using circulant embedding techniques to sample from the unconstrained modified prior . We additionally pay careful attention to mitigate the computational complexity arising from updating hyperparameters within the covariance kernel of the Gaussian process. The developed algorithm is shown to be accurate and highly efficient in simulated and real data examples.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-020-09922-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Bayesian analysis ; Computer simulation ; Constraints ; Covariance ; Gaussian process ; Mathematics and Statistics ; Probability and Statistics in Computer Science ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs</subject><ispartof>Statistics and computing, 2020-07, Vol.30 (4), p.839-853</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-46f49c0868c0b68ab68451b8cd9bf2ea641e84e853f9c57dc822d7b399dc1b7e3</citedby><cites>FETCH-LOGICAL-c319t-46f49c0868c0b68ab68451b8cd9bf2ea641e84e853f9c57dc822d7b399dc1b7e3</cites><orcidid>0000-0001-6197-2055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Ray, Pallavi</creatorcontrib><creatorcontrib>Pati, Debdeep</creatorcontrib><creatorcontrib>Bhattacharya, Anirban</creatorcontrib><title>Efficient Bayesian shape-restricted function estimation with constrained Gaussian process priors</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>This article revisits the problem of Bayesian shape-restricted inference in the light of a recently developed approximate Gaussian process that admits an equivalent formulation of the shape constraints in terms of the basis coefficients. We propose a strategy to efficiently sample from the resulting constrained posterior by absorbing a smooth relaxation of the constraint in the likelihood and using circulant embedding techniques to sample from the unconstrained modified prior . We additionally pay careful attention to mitigate the computational complexity arising from updating hyperparameters within the covariance kernel of the Gaussian process. The developed algorithm is shown to be accurate and highly efficient in simulated and real data examples.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Constraints</subject><subject>Covariance</subject><subject>Gaussian process</subject><subject>Mathematics and Statistics</subject><subject>Probability and Statistics in Computer Science</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkz26So5ZahYIXPcdsNrEpNluTXaTf3rQVvHkYZhh-b97wELomcEsAxF0mhFKKgQIGpfbTCZqQWjBMmKhP0QRUA5gRwc_RRc5rAEIaxifofe59sMHFoXowO5eDiVVema3DyeUhBTu4rvJjtEPoY1VWYWMO43cYVpXtY4FMiAVamDEf5NvUW5dz6aFP-RKdefOZ3dVvn6K3x_nr7AkvXxbPs_sltoyoAfPGc2VBNtJC20hTiteklbZTrafONJw4yZ2smVe2Fp2VlHaiZUp1lrTCsSm6Od4t9l9jeVSv-zHFYqkpByVFTZUqFD1SNvU5J-d1-XJj0k4T0Psk9TFJXZLUhyQ1FBE7inKB44dLf6f_Uf0ALhh4VQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Ray, Pallavi</creator><creator>Pati, Debdeep</creator><creator>Bhattacharya, Anirban</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6197-2055</orcidid></search><sort><creationdate>20200701</creationdate><title>Efficient Bayesian shape-restricted function estimation with constrained Gaussian process priors</title><author>Ray, Pallavi ; Pati, Debdeep ; Bhattacharya, Anirban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-46f49c0868c0b68ab68451b8cd9bf2ea641e84e853f9c57dc822d7b399dc1b7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Constraints</topic><topic>Covariance</topic><topic>Gaussian process</topic><topic>Mathematics and Statistics</topic><topic>Probability and Statistics in Computer Science</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, Pallavi</creatorcontrib><creatorcontrib>Pati, Debdeep</creatorcontrib><creatorcontrib>Bhattacharya, Anirban</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ray, Pallavi</au><au>Pati, Debdeep</au><au>Bhattacharya, Anirban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Bayesian shape-restricted function estimation with constrained Gaussian process priors</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>839</spage><epage>853</epage><pages>839-853</pages><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>This article revisits the problem of Bayesian shape-restricted inference in the light of a recently developed approximate Gaussian process that admits an equivalent formulation of the shape constraints in terms of the basis coefficients. We propose a strategy to efficiently sample from the resulting constrained posterior by absorbing a smooth relaxation of the constraint in the likelihood and using circulant embedding techniques to sample from the unconstrained modified prior . We additionally pay careful attention to mitigate the computational complexity arising from updating hyperparameters within the covariance kernel of the Gaussian process. The developed algorithm is shown to be accurate and highly efficient in simulated and real data examples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-020-09922-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6197-2055</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-3174
ispartof Statistics and computing, 2020-07, Vol.30 (4), p.839-853
issn 0960-3174
1573-1375
language eng
recordid cdi_proquest_journals_2409875299
source Springer Link
subjects Algorithms
Artificial Intelligence
Bayesian analysis
Computer simulation
Constraints
Covariance
Gaussian process
Mathematics and Statistics
Probability and Statistics in Computer Science
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
title Efficient Bayesian shape-restricted function estimation with constrained Gaussian process priors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A04%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Bayesian%20shape-restricted%20function%20estimation%20with%20constrained%20Gaussian%20process%20priors&rft.jtitle=Statistics%20and%20computing&rft.au=Ray,%20Pallavi&rft.date=2020-07-01&rft.volume=30&rft.issue=4&rft.spage=839&rft.epage=853&rft.pages=839-853&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-020-09922-0&rft_dat=%3Cproquest_cross%3E2409875299%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-46f49c0868c0b68ab68451b8cd9bf2ea641e84e853f9c57dc822d7b399dc1b7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2409875299&rft_id=info:pmid/&rfr_iscdi=true