Loading…

Controlling the nonlinear relaxation of quantized propagating magnons in nanodevices

Relaxation of linear magnetization dynamics is well described by the viscous Gilbert damping processes. However, for strong excitations, nonlinear damping processes such as the decay via magnon-magnon interactions emerge and trigger additional relaxation channels. Here, we use space- and time-resolv...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-03
Main Authors: Mohseni, M, Wang, Q, Heinz, B, Kewenig, M, Schneider, M, Kohl, F, Lägel, B, Dubs, C, Chumak, A V, Pirro, P
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mohseni, M
Wang, Q
Heinz, B
Kewenig, M
Schneider, M
Kohl, F
Lägel, B
Dubs, C
Chumak, A V
Pirro, P
description Relaxation of linear magnetization dynamics is well described by the viscous Gilbert damping processes. However, for strong excitations, nonlinear damping processes such as the decay via magnon-magnon interactions emerge and trigger additional relaxation channels. Here, we use space- and time-resolved microfocused Brillouin light scattering spectroscopy and micromagnetic simulations to investigate the nonlinear relaxation of strongly driven propagating spin waves in yttrium iron garnet nanoconduits. We show that the nonlinear magnon relaxation in this highly quantized system possesses intermodal features, i.e., magnons scatter to higher-order quantized modes through a cascade of scattering events. We further show how to control such intermodal dissipation processes by quantization of the magnon band in single-mode devices, where this phenomenon approaches its fundamental limit. Our study extends the knowledge about nonlinear propagating spin waves in nanostructures which is essential for the construction of advanced spin-wave elements as well as the realization of Bose-Einstein condensates in scaled systems.
doi_str_mv 10.48550/arxiv.2006.03400
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2410534602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410534602</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-3cf7f8418a15219e40ee5e74d233ed89354eecb7a4f6ea3922e3c44f1e54c2c03</originalsourceid><addsrcrecordid>eNotjktrwzAQhEWh0JDmB_Qm6NnparXy41hMXxDIxfewtdeugyslfoTQX19Be5qB4ZsZpR4MbCl3Dp54vPaXLQKkW7AEcKNWaK1JckK8U5tpOgIAphk6Z1eqKoOfxzAMve_0_CXaBx-98KhHGfjKcx-8Dq0-L-zn_kcafRrDibsYROKbuwhMuvfasw-NXPpapnt12_IwyeZf16p6fanK92S3f_son3cJO8TE1m3W5mRyNg5NIQQiTjJq4l1p8sI6Eqk_M6Y2FbYFotiaqDXiqMYa7Fo9_tXGR-dFpvlwDMvo4-IByYCzlALaX2MdU0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410534602</pqid></control><display><type>article</type><title>Controlling the nonlinear relaxation of quantized propagating magnons in nanodevices</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Mohseni, M ; Wang, Q ; Heinz, B ; Kewenig, M ; Schneider, M ; Kohl, F ; Lägel, B ; Dubs, C ; Chumak, A V ; Pirro, P</creator><creatorcontrib>Mohseni, M ; Wang, Q ; Heinz, B ; Kewenig, M ; Schneider, M ; Kohl, F ; Lägel, B ; Dubs, C ; Chumak, A V ; Pirro, P</creatorcontrib><description>Relaxation of linear magnetization dynamics is well described by the viscous Gilbert damping processes. However, for strong excitations, nonlinear damping processes such as the decay via magnon-magnon interactions emerge and trigger additional relaxation channels. Here, we use space- and time-resolved microfocused Brillouin light scattering spectroscopy and micromagnetic simulations to investigate the nonlinear relaxation of strongly driven propagating spin waves in yttrium iron garnet nanoconduits. We show that the nonlinear magnon relaxation in this highly quantized system possesses intermodal features, i.e., magnons scatter to higher-order quantized modes through a cascade of scattering events. We further show how to control such intermodal dissipation processes by quantization of the magnon band in single-mode devices, where this phenomenon approaches its fundamental limit. Our study extends the knowledge about nonlinear propagating spin waves in nanostructures which is essential for the construction of advanced spin-wave elements as well as the realization of Bose-Einstein condensates in scaled systems.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2006.03400</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Damping ; Decay rate ; Intermodal ; Light scattering ; Magnons ; Nanotechnology devices ; Nonlinear control ; Yttrium ; Yttrium-iron garnet</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2410534602?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Mohseni, M</creatorcontrib><creatorcontrib>Wang, Q</creatorcontrib><creatorcontrib>Heinz, B</creatorcontrib><creatorcontrib>Kewenig, M</creatorcontrib><creatorcontrib>Schneider, M</creatorcontrib><creatorcontrib>Kohl, F</creatorcontrib><creatorcontrib>Lägel, B</creatorcontrib><creatorcontrib>Dubs, C</creatorcontrib><creatorcontrib>Chumak, A V</creatorcontrib><creatorcontrib>Pirro, P</creatorcontrib><title>Controlling the nonlinear relaxation of quantized propagating magnons in nanodevices</title><title>arXiv.org</title><description>Relaxation of linear magnetization dynamics is well described by the viscous Gilbert damping processes. However, for strong excitations, nonlinear damping processes such as the decay via magnon-magnon interactions emerge and trigger additional relaxation channels. Here, we use space- and time-resolved microfocused Brillouin light scattering spectroscopy and micromagnetic simulations to investigate the nonlinear relaxation of strongly driven propagating spin waves in yttrium iron garnet nanoconduits. We show that the nonlinear magnon relaxation in this highly quantized system possesses intermodal features, i.e., magnons scatter to higher-order quantized modes through a cascade of scattering events. We further show how to control such intermodal dissipation processes by quantization of the magnon band in single-mode devices, where this phenomenon approaches its fundamental limit. Our study extends the knowledge about nonlinear propagating spin waves in nanostructures which is essential for the construction of advanced spin-wave elements as well as the realization of Bose-Einstein condensates in scaled systems.</description><subject>Damping</subject><subject>Decay rate</subject><subject>Intermodal</subject><subject>Light scattering</subject><subject>Magnons</subject><subject>Nanotechnology devices</subject><subject>Nonlinear control</subject><subject>Yttrium</subject><subject>Yttrium-iron garnet</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjktrwzAQhEWh0JDmB_Qm6NnparXy41hMXxDIxfewtdeugyslfoTQX19Be5qB4ZsZpR4MbCl3Dp54vPaXLQKkW7AEcKNWaK1JckK8U5tpOgIAphk6Z1eqKoOfxzAMve_0_CXaBx-98KhHGfjKcx-8Dq0-L-zn_kcafRrDibsYROKbuwhMuvfasw-NXPpapnt12_IwyeZf16p6fanK92S3f_son3cJO8TE1m3W5mRyNg5NIQQiTjJq4l1p8sI6Eqk_M6Y2FbYFotiaqDXiqMYa7Fo9_tXGR-dFpvlwDMvo4-IByYCzlALaX2MdU0c</recordid><startdate>20210307</startdate><enddate>20210307</enddate><creator>Mohseni, M</creator><creator>Wang, Q</creator><creator>Heinz, B</creator><creator>Kewenig, M</creator><creator>Schneider, M</creator><creator>Kohl, F</creator><creator>Lägel, B</creator><creator>Dubs, C</creator><creator>Chumak, A V</creator><creator>Pirro, P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210307</creationdate><title>Controlling the nonlinear relaxation of quantized propagating magnons in nanodevices</title><author>Mohseni, M ; Wang, Q ; Heinz, B ; Kewenig, M ; Schneider, M ; Kohl, F ; Lägel, B ; Dubs, C ; Chumak, A V ; Pirro, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-3cf7f8418a15219e40ee5e74d233ed89354eecb7a4f6ea3922e3c44f1e54c2c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Damping</topic><topic>Decay rate</topic><topic>Intermodal</topic><topic>Light scattering</topic><topic>Magnons</topic><topic>Nanotechnology devices</topic><topic>Nonlinear control</topic><topic>Yttrium</topic><topic>Yttrium-iron garnet</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohseni, M</creatorcontrib><creatorcontrib>Wang, Q</creatorcontrib><creatorcontrib>Heinz, B</creatorcontrib><creatorcontrib>Kewenig, M</creatorcontrib><creatorcontrib>Schneider, M</creatorcontrib><creatorcontrib>Kohl, F</creatorcontrib><creatorcontrib>Lägel, B</creatorcontrib><creatorcontrib>Dubs, C</creatorcontrib><creatorcontrib>Chumak, A V</creatorcontrib><creatorcontrib>Pirro, P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohseni, M</au><au>Wang, Q</au><au>Heinz, B</au><au>Kewenig, M</au><au>Schneider, M</au><au>Kohl, F</au><au>Lägel, B</au><au>Dubs, C</au><au>Chumak, A V</au><au>Pirro, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the nonlinear relaxation of quantized propagating magnons in nanodevices</atitle><jtitle>arXiv.org</jtitle><date>2021-03-07</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Relaxation of linear magnetization dynamics is well described by the viscous Gilbert damping processes. However, for strong excitations, nonlinear damping processes such as the decay via magnon-magnon interactions emerge and trigger additional relaxation channels. Here, we use space- and time-resolved microfocused Brillouin light scattering spectroscopy and micromagnetic simulations to investigate the nonlinear relaxation of strongly driven propagating spin waves in yttrium iron garnet nanoconduits. We show that the nonlinear magnon relaxation in this highly quantized system possesses intermodal features, i.e., magnons scatter to higher-order quantized modes through a cascade of scattering events. We further show how to control such intermodal dissipation processes by quantization of the magnon band in single-mode devices, where this phenomenon approaches its fundamental limit. Our study extends the knowledge about nonlinear propagating spin waves in nanostructures which is essential for the construction of advanced spin-wave elements as well as the realization of Bose-Einstein condensates in scaled systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2006.03400</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2410534602
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Damping
Decay rate
Intermodal
Light scattering
Magnons
Nanotechnology devices
Nonlinear control
Yttrium
Yttrium-iron garnet
title Controlling the nonlinear relaxation of quantized propagating magnons in nanodevices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20nonlinear%20relaxation%20of%20quantized%20propagating%20magnons%20in%20nanodevices&rft.jtitle=arXiv.org&rft.au=Mohseni,%20M&rft.date=2021-03-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2006.03400&rft_dat=%3Cproquest%3E2410534602%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-3cf7f8418a15219e40ee5e74d233ed89354eecb7a4f6ea3922e3c44f1e54c2c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2410534602&rft_id=info:pmid/&rfr_iscdi=true