Loading…

Observation of Undamped 3D Brownian Motion of Nanoparticles Using Liquid‐Cell Scanning Transmission Electron Microscopy

In theory, liquid‐cell (scanning) transmission electron microscopy (LC(S)TEM) is the ideal method to measure 3D diffusion of nanoparticles (NPs) on a single particle level, beyond the capabilities of optical methods. However, particle diffusion experiments have been especially hard to explain in LC(...

Full description

Saved in:
Bibliographic Details
Published in:Particle & particle systems characterization 2020-06, Vol.37 (6), p.n/a
Main Authors: Welling, Tom A. J., Sadighikia, Sina, Watanabe, Kanako, Grau‐Carbonell, Albert, Bransen, Maarten, Nagao, Daisuke, van Blaaderen, Alfons, van Huis, Marijn A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4603-aa9f6b3ee5a0770ab4a8938a519eb85a7143418f866ea10ad29bfa6f4e35e8523
cites cdi_FETCH-LOGICAL-c4603-aa9f6b3ee5a0770ab4a8938a519eb85a7143418f866ea10ad29bfa6f4e35e8523
container_end_page n/a
container_issue 6
container_start_page
container_title Particle & particle systems characterization
container_volume 37
creator Welling, Tom A. J.
Sadighikia, Sina
Watanabe, Kanako
Grau‐Carbonell, Albert
Bransen, Maarten
Nagao, Daisuke
van Blaaderen, Alfons
van Huis, Marijn A.
description In theory, liquid‐cell (scanning) transmission electron microscopy (LC(S)TEM) is the ideal method to measure 3D diffusion of nanoparticles (NPs) on a single particle level, beyond the capabilities of optical methods. However, particle diffusion experiments have been especially hard to explain in LC(S)TEM as the observed motion thus far has been slower than theoretical predictions by 3–8 orders of magnitude due to electron beam effects. Here, direct experimental evidence of undamped diffusion for two systems is shown; charge‐neutral 77 nm gold nanoparticles in glycerol and negatively charged 350 nm titania particles in glycerol carbonate. The high viscosities of the used media and a low electron dose rate allow observation of Brownian motion that is not significantly altered by the electron beam. The resulting diffusion coefficient agrees excellently with a theoretical value assuming free diffusion. It is confirmed that the particles are also moving in the direction parallel to the electron beam by simulating STEM images using Monte Carlo simulations. Simulations and experiments show blurring of the particles when these move out of focus. These results make clear that direct observation of 3D diffusion of NPs is possible, which is of critical importance for the study of interparticle interactions or in situ colloidal self‐assembly using LC(S)TEM. In theory, liquid‐cell transmission electron microscopy is the ideal method to measure 3D diffusion of single nanoparticles. However, mobilities reported thus far are 3–8 orders of magnitude lower than expected. Here, direct experimental evidence of undamped Brownian diffusion for two systems is shown; charge‐neutral 77 nm gold nanoparticles in glycerol and negatively charged 350 nm titania particles in glycerol carbonate.
doi_str_mv 10.1002/ppsc.202000003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2410649513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410649513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4603-aa9f6b3ee5a0770ab4a8938a519eb85a7143418f866ea10ad29bfa6f4e35e8523</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWwZR2JdYodP5IsITylllZqu7YmiYNcpXZqt1TZ8Ql8I19CovJYMpsZzdwzY1-ELgkeEYyj66bxxSjCEe6DHqEB4REJGSHxMRrglLIQJ0KcojPvV51CcCIGqJ3mXrk32GprAlsFS1PCulFlQO-CW2f3RoMJJvZn_ALGNuC2uqiVD5Zem9dgrDc7XX6-f2SqroN5Acb07YUD49fa-x69r1WxdV0x0YWzvrBNe45OKqi9uvjOQ7R8uF9kT-F4-vic3YzDgglMQ4C0EjlVigOOYww5gySlCXCSqjzhEBNGGUmq7msKCIYySvMKRMUU5SrhER2iq8PextnNTvmtXNmdM91JGTGCBUs5oZ1qdFD1z_NOVbJxeg2ulQTL3l7Z2yt_7e2A9ADsda3af9RyNptnf-wXhACBQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410649513</pqid></control><display><type>article</type><title>Observation of Undamped 3D Brownian Motion of Nanoparticles Using Liquid‐Cell Scanning Transmission Electron Microscopy</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Welling, Tom A. J. ; Sadighikia, Sina ; Watanabe, Kanako ; Grau‐Carbonell, Albert ; Bransen, Maarten ; Nagao, Daisuke ; van Blaaderen, Alfons ; van Huis, Marijn A.</creator><creatorcontrib>Welling, Tom A. J. ; Sadighikia, Sina ; Watanabe, Kanako ; Grau‐Carbonell, Albert ; Bransen, Maarten ; Nagao, Daisuke ; van Blaaderen, Alfons ; van Huis, Marijn A.</creatorcontrib><description>In theory, liquid‐cell (scanning) transmission electron microscopy (LC(S)TEM) is the ideal method to measure 3D diffusion of nanoparticles (NPs) on a single particle level, beyond the capabilities of optical methods. However, particle diffusion experiments have been especially hard to explain in LC(S)TEM as the observed motion thus far has been slower than theoretical predictions by 3–8 orders of magnitude due to electron beam effects. Here, direct experimental evidence of undamped diffusion for two systems is shown; charge‐neutral 77 nm gold nanoparticles in glycerol and negatively charged 350 nm titania particles in glycerol carbonate. The high viscosities of the used media and a low electron dose rate allow observation of Brownian motion that is not significantly altered by the electron beam. The resulting diffusion coefficient agrees excellently with a theoretical value assuming free diffusion. It is confirmed that the particles are also moving in the direction parallel to the electron beam by simulating STEM images using Monte Carlo simulations. Simulations and experiments show blurring of the particles when these move out of focus. These results make clear that direct observation of 3D diffusion of NPs is possible, which is of critical importance for the study of interparticle interactions or in situ colloidal self‐assembly using LC(S)TEM. In theory, liquid‐cell transmission electron microscopy is the ideal method to measure 3D diffusion of single nanoparticles. However, mobilities reported thus far are 3–8 orders of magnitude lower than expected. Here, direct experimental evidence of undamped Brownian diffusion for two systems is shown; charge‐neutral 77 nm gold nanoparticles in glycerol and negatively charged 350 nm titania particles in glycerol carbonate.</description><identifier>ISSN: 0934-0866</identifier><identifier>EISSN: 1521-4117</identifier><identifier>DOI: 10.1002/ppsc.202000003</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>3D motion ; Blurring ; Brownian motion ; Charged particles ; Computer simulation ; Diffusion coefficient ; Dosage ; Electron beams ; Electrons ; Glycerol ; liquid‐cell electron microscopy ; Nanoparticles ; Optics ; Particle diffusion ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Three dimensional motion ; Transmission electron microscopy</subject><ispartof>Particle &amp; particle systems characterization, 2020-06, Vol.37 (6), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4603-aa9f6b3ee5a0770ab4a8938a519eb85a7143418f866ea10ad29bfa6f4e35e8523</citedby><cites>FETCH-LOGICAL-c4603-aa9f6b3ee5a0770ab4a8938a519eb85a7143418f866ea10ad29bfa6f4e35e8523</cites><orcidid>0000-0002-8039-2256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Welling, Tom A. J.</creatorcontrib><creatorcontrib>Sadighikia, Sina</creatorcontrib><creatorcontrib>Watanabe, Kanako</creatorcontrib><creatorcontrib>Grau‐Carbonell, Albert</creatorcontrib><creatorcontrib>Bransen, Maarten</creatorcontrib><creatorcontrib>Nagao, Daisuke</creatorcontrib><creatorcontrib>van Blaaderen, Alfons</creatorcontrib><creatorcontrib>van Huis, Marijn A.</creatorcontrib><title>Observation of Undamped 3D Brownian Motion of Nanoparticles Using Liquid‐Cell Scanning Transmission Electron Microscopy</title><title>Particle &amp; particle systems characterization</title><description>In theory, liquid‐cell (scanning) transmission electron microscopy (LC(S)TEM) is the ideal method to measure 3D diffusion of nanoparticles (NPs) on a single particle level, beyond the capabilities of optical methods. However, particle diffusion experiments have been especially hard to explain in LC(S)TEM as the observed motion thus far has been slower than theoretical predictions by 3–8 orders of magnitude due to electron beam effects. Here, direct experimental evidence of undamped diffusion for two systems is shown; charge‐neutral 77 nm gold nanoparticles in glycerol and negatively charged 350 nm titania particles in glycerol carbonate. The high viscosities of the used media and a low electron dose rate allow observation of Brownian motion that is not significantly altered by the electron beam. The resulting diffusion coefficient agrees excellently with a theoretical value assuming free diffusion. It is confirmed that the particles are also moving in the direction parallel to the electron beam by simulating STEM images using Monte Carlo simulations. Simulations and experiments show blurring of the particles when these move out of focus. These results make clear that direct observation of 3D diffusion of NPs is possible, which is of critical importance for the study of interparticle interactions or in situ colloidal self‐assembly using LC(S)TEM. In theory, liquid‐cell transmission electron microscopy is the ideal method to measure 3D diffusion of single nanoparticles. However, mobilities reported thus far are 3–8 orders of magnitude lower than expected. Here, direct experimental evidence of undamped Brownian diffusion for two systems is shown; charge‐neutral 77 nm gold nanoparticles in glycerol and negatively charged 350 nm titania particles in glycerol carbonate.</description><subject>3D motion</subject><subject>Blurring</subject><subject>Brownian motion</subject><subject>Charged particles</subject><subject>Computer simulation</subject><subject>Diffusion coefficient</subject><subject>Dosage</subject><subject>Electron beams</subject><subject>Electrons</subject><subject>Glycerol</subject><subject>liquid‐cell electron microscopy</subject><subject>Nanoparticles</subject><subject>Optics</subject><subject>Particle diffusion</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Three dimensional motion</subject><subject>Transmission electron microscopy</subject><issn>0934-0866</issn><issn>1521-4117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtOwzAQRS0EEqWwZR2JdYodP5IsITylllZqu7YmiYNcpXZqt1TZ8Ql8I19CovJYMpsZzdwzY1-ELgkeEYyj66bxxSjCEe6DHqEB4REJGSHxMRrglLIQJ0KcojPvV51CcCIGqJ3mXrk32GprAlsFS1PCulFlQO-CW2f3RoMJJvZn_ALGNuC2uqiVD5Zem9dgrDc7XX6-f2SqroN5Acb07YUD49fa-x69r1WxdV0x0YWzvrBNe45OKqi9uvjOQ7R8uF9kT-F4-vic3YzDgglMQ4C0EjlVigOOYww5gySlCXCSqjzhEBNGGUmq7msKCIYySvMKRMUU5SrhER2iq8PextnNTvmtXNmdM91JGTGCBUs5oZ1qdFD1z_NOVbJxeg2ulQTL3l7Z2yt_7e2A9ADsda3af9RyNptnf-wXhACBQg</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Welling, Tom A. J.</creator><creator>Sadighikia, Sina</creator><creator>Watanabe, Kanako</creator><creator>Grau‐Carbonell, Albert</creator><creator>Bransen, Maarten</creator><creator>Nagao, Daisuke</creator><creator>van Blaaderen, Alfons</creator><creator>van Huis, Marijn A.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8039-2256</orcidid></search><sort><creationdate>202006</creationdate><title>Observation of Undamped 3D Brownian Motion of Nanoparticles Using Liquid‐Cell Scanning Transmission Electron Microscopy</title><author>Welling, Tom A. J. ; Sadighikia, Sina ; Watanabe, Kanako ; Grau‐Carbonell, Albert ; Bransen, Maarten ; Nagao, Daisuke ; van Blaaderen, Alfons ; van Huis, Marijn A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4603-aa9f6b3ee5a0770ab4a8938a519eb85a7143418f866ea10ad29bfa6f4e35e8523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D motion</topic><topic>Blurring</topic><topic>Brownian motion</topic><topic>Charged particles</topic><topic>Computer simulation</topic><topic>Diffusion coefficient</topic><topic>Dosage</topic><topic>Electron beams</topic><topic>Electrons</topic><topic>Glycerol</topic><topic>liquid‐cell electron microscopy</topic><topic>Nanoparticles</topic><topic>Optics</topic><topic>Particle diffusion</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Three dimensional motion</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Welling, Tom A. J.</creatorcontrib><creatorcontrib>Sadighikia, Sina</creatorcontrib><creatorcontrib>Watanabe, Kanako</creatorcontrib><creatorcontrib>Grau‐Carbonell, Albert</creatorcontrib><creatorcontrib>Bransen, Maarten</creatorcontrib><creatorcontrib>Nagao, Daisuke</creatorcontrib><creatorcontrib>van Blaaderen, Alfons</creatorcontrib><creatorcontrib>van Huis, Marijn A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Particle &amp; particle systems characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Welling, Tom A. J.</au><au>Sadighikia, Sina</au><au>Watanabe, Kanako</au><au>Grau‐Carbonell, Albert</au><au>Bransen, Maarten</au><au>Nagao, Daisuke</au><au>van Blaaderen, Alfons</au><au>van Huis, Marijn A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of Undamped 3D Brownian Motion of Nanoparticles Using Liquid‐Cell Scanning Transmission Electron Microscopy</atitle><jtitle>Particle &amp; particle systems characterization</jtitle><date>2020-06</date><risdate>2020</risdate><volume>37</volume><issue>6</issue><epage>n/a</epage><issn>0934-0866</issn><eissn>1521-4117</eissn><abstract>In theory, liquid‐cell (scanning) transmission electron microscopy (LC(S)TEM) is the ideal method to measure 3D diffusion of nanoparticles (NPs) on a single particle level, beyond the capabilities of optical methods. However, particle diffusion experiments have been especially hard to explain in LC(S)TEM as the observed motion thus far has been slower than theoretical predictions by 3–8 orders of magnitude due to electron beam effects. Here, direct experimental evidence of undamped diffusion for two systems is shown; charge‐neutral 77 nm gold nanoparticles in glycerol and negatively charged 350 nm titania particles in glycerol carbonate. The high viscosities of the used media and a low electron dose rate allow observation of Brownian motion that is not significantly altered by the electron beam. The resulting diffusion coefficient agrees excellently with a theoretical value assuming free diffusion. It is confirmed that the particles are also moving in the direction parallel to the electron beam by simulating STEM images using Monte Carlo simulations. Simulations and experiments show blurring of the particles when these move out of focus. These results make clear that direct observation of 3D diffusion of NPs is possible, which is of critical importance for the study of interparticle interactions or in situ colloidal self‐assembly using LC(S)TEM. In theory, liquid‐cell transmission electron microscopy is the ideal method to measure 3D diffusion of single nanoparticles. However, mobilities reported thus far are 3–8 orders of magnitude lower than expected. Here, direct experimental evidence of undamped Brownian diffusion for two systems is shown; charge‐neutral 77 nm gold nanoparticles in glycerol and negatively charged 350 nm titania particles in glycerol carbonate.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppsc.202000003</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8039-2256</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0934-0866
ispartof Particle & particle systems characterization, 2020-06, Vol.37 (6), p.n/a
issn 0934-0866
1521-4117
language eng
recordid cdi_proquest_journals_2410649513
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects 3D motion
Blurring
Brownian motion
Charged particles
Computer simulation
Diffusion coefficient
Dosage
Electron beams
Electrons
Glycerol
liquid‐cell electron microscopy
Nanoparticles
Optics
Particle diffusion
Scanning electron microscopy
Scanning transmission electron microscopy
Three dimensional motion
Transmission electron microscopy
title Observation of Undamped 3D Brownian Motion of Nanoparticles Using Liquid‐Cell Scanning Transmission Electron Microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20Undamped%203D%20Brownian%20Motion%20of%20Nanoparticles%20Using%20Liquid%E2%80%90Cell%20Scanning%20Transmission%20Electron%20Microscopy&rft.jtitle=Particle%20&%20particle%20systems%20characterization&rft.au=Welling,%20Tom%20A.%20J.&rft.date=2020-06&rft.volume=37&rft.issue=6&rft.epage=n/a&rft.issn=0934-0866&rft.eissn=1521-4117&rft_id=info:doi/10.1002/ppsc.202000003&rft_dat=%3Cproquest_cross%3E2410649513%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4603-aa9f6b3ee5a0770ab4a8938a519eb85a7143418f866ea10ad29bfa6f4e35e8523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2410649513&rft_id=info:pmid/&rfr_iscdi=true