Loading…

Prediction of Color and pH of Salted Porcine Meats Using Visible and Near-Infrared Hyperspectral Imaging

A quick, accurate, and reliable method for the evaluation of meat quality during salting stages is essential for quality control and management. This study was carried out to investigate the utility of hyperspectral imaging (HSI) techniques (400–1,000 nm) for predicting the color and pH of salted me...

Full description

Saved in:
Bibliographic Details
Published in:Food and bioprocess technology 2014-11, Vol.7 (11), p.3100-3108
Main Authors: Liu, Dan, Ma, Ji, Sun, Da-Wen, Pu, Hongbin, Gao, Wenhong, Qu, Jiahuan, Zeng, Xin-An
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c476t-7ee784571c2e20ed0b8ff321d155e6b75fa92276d723cca174b071e8e58d67bf3
cites cdi_FETCH-LOGICAL-c476t-7ee784571c2e20ed0b8ff321d155e6b75fa92276d723cca174b071e8e58d67bf3
container_end_page 3108
container_issue 11
container_start_page 3100
container_title Food and bioprocess technology
container_volume 7
creator Liu, Dan
Ma, Ji
Sun, Da-Wen
Pu, Hongbin
Gao, Wenhong
Qu, Jiahuan
Zeng, Xin-An
description A quick, accurate, and reliable method for the evaluation of meat quality during salting stages is essential for quality control and management. This study was carried out to investigate the utility of hyperspectral imaging (HSI) techniques (400–1,000 nm) for predicting the color and pH of salted meat. Specifically, partial least squares regression (PLSR) was applied to the spectral data extracted from the images of the meat to develop statistical models for predicting color and pH. A subset of information-rich wavelengths was identified by principal component analysis (PCA) and used in a regression model. The results from the model with the reduced number of wavelengths generated L*, a*, and pH values with coefficients of determination (R ² cᵥ) of 0.723, 0.726, and 0.86 and root mean square errors estimated by cross-validation (RMSECV) of 2.898, 1.408, and 0.073, respectively. These values compared favorably with values generated by a PLSR model using all of the wavelengths investigated, illustrating the reasonable accuracy and robustness of the method. The overall results of this study demonstrate the potential of HSI to serve as an objective and nondestructive method for rapid determination of color and pH of porcine meat during the salting process.
doi_str_mv 10.1007/s11947-014-1327-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2410777986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410777986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-7ee784571c2e20ed0b8ff321d155e6b75fa92276d723cca174b071e8e58d67bf3</originalsourceid><addsrcrecordid>eNp9kMtKxEAQRYMo-PwAVza4jnb1I5UsZVBnwBeM47bpJNVjhpiO3XHh35sxojtXVQXn3oKTJKfAL4BzvIwAhcKUg0pBCkz1TnIAhdSpBlXs_u6S7yeHMW44z7gCeZC8PgWqm2pofMe8YzPf-sBsV7N-vr2Xth2oZk8-VE1H7J7sENkqNt2avTSxKVv6hh_IhnTRuWDHNjb_7CnEnqoh2JYt3ux65I-TPWfbSCc_8yhZ3Vw_z-bp3ePtYnZ1l1YKsyFFIsyVRqgECU41L3PnpIAatKasRO1sIQRmNQpZVRZQlRyBctJ5nWHp5FFyPvX2wb9_UBzMxn-EbnxphAKOiEWejRRMVBV8jIGc6UPzZsOnAW62Qs0k1IxCzVao0WNGTJk4st2awl_zf6GzKeSsN3YdmmhWSzECnANKJbX8AvRSgR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410777986</pqid></control><display><type>article</type><title>Prediction of Color and pH of Salted Porcine Meats Using Visible and Near-Infrared Hyperspectral Imaging</title><source>Springer Link</source><creator>Liu, Dan ; Ma, Ji ; Sun, Da-Wen ; Pu, Hongbin ; Gao, Wenhong ; Qu, Jiahuan ; Zeng, Xin-An</creator><creatorcontrib>Liu, Dan ; Ma, Ji ; Sun, Da-Wen ; Pu, Hongbin ; Gao, Wenhong ; Qu, Jiahuan ; Zeng, Xin-An</creatorcontrib><description>A quick, accurate, and reliable method for the evaluation of meat quality during salting stages is essential for quality control and management. This study was carried out to investigate the utility of hyperspectral imaging (HSI) techniques (400–1,000 nm) for predicting the color and pH of salted meat. Specifically, partial least squares regression (PLSR) was applied to the spectral data extracted from the images of the meat to develop statistical models for predicting color and pH. A subset of information-rich wavelengths was identified by principal component analysis (PCA) and used in a regression model. The results from the model with the reduced number of wavelengths generated L*, a*, and pH values with coefficients of determination (R ² cᵥ) of 0.723, 0.726, and 0.86 and root mean square errors estimated by cross-validation (RMSECV) of 2.898, 1.408, and 0.073, respectively. These values compared favorably with values generated by a PLSR model using all of the wavelengths investigated, illustrating the reasonable accuracy and robustness of the method. The overall results of this study demonstrate the potential of HSI to serve as an objective and nondestructive method for rapid determination of color and pH of porcine meat during the salting process.</description><identifier>ISSN: 1935-5130</identifier><identifier>EISSN: 1935-5149</identifier><identifier>DOI: 10.1007/s11947-014-1327-5</identifier><language>eng</language><publisher>Boston: Springer-Verlag</publisher><subject>Agriculture ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Color ; Food Science ; hyperspectral imagery ; Hyperspectral imaging ; Infrared imaging ; least squares ; Mathematical models ; Meat ; meat quality ; Nondestructive testing ; Original Paper ; pH effects ; pork ; prediction ; principal component analysis ; Principal components analysis ; Quality control ; rapid methods ; Regression analysis ; Regression models ; Salting ; Statistical analysis ; Statistical models ; swine ; Wavelengths</subject><ispartof>Food and bioprocess technology, 2014-11, Vol.7 (11), p.3100-3108</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-7ee784571c2e20ed0b8ff321d155e6b75fa92276d723cca174b071e8e58d67bf3</citedby><cites>FETCH-LOGICAL-c476t-7ee784571c2e20ed0b8ff321d155e6b75fa92276d723cca174b071e8e58d67bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Ma, Ji</creatorcontrib><creatorcontrib>Sun, Da-Wen</creatorcontrib><creatorcontrib>Pu, Hongbin</creatorcontrib><creatorcontrib>Gao, Wenhong</creatorcontrib><creatorcontrib>Qu, Jiahuan</creatorcontrib><creatorcontrib>Zeng, Xin-An</creatorcontrib><title>Prediction of Color and pH of Salted Porcine Meats Using Visible and Near-Infrared Hyperspectral Imaging</title><title>Food and bioprocess technology</title><addtitle>Food Bioprocess Technol</addtitle><description>A quick, accurate, and reliable method for the evaluation of meat quality during salting stages is essential for quality control and management. This study was carried out to investigate the utility of hyperspectral imaging (HSI) techniques (400–1,000 nm) for predicting the color and pH of salted meat. Specifically, partial least squares regression (PLSR) was applied to the spectral data extracted from the images of the meat to develop statistical models for predicting color and pH. A subset of information-rich wavelengths was identified by principal component analysis (PCA) and used in a regression model. The results from the model with the reduced number of wavelengths generated L*, a*, and pH values with coefficients of determination (R ² cᵥ) of 0.723, 0.726, and 0.86 and root mean square errors estimated by cross-validation (RMSECV) of 2.898, 1.408, and 0.073, respectively. These values compared favorably with values generated by a PLSR model using all of the wavelengths investigated, illustrating the reasonable accuracy and robustness of the method. The overall results of this study demonstrate the potential of HSI to serve as an objective and nondestructive method for rapid determination of color and pH of porcine meat during the salting process.</description><subject>Agriculture</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Color</subject><subject>Food Science</subject><subject>hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>Infrared imaging</subject><subject>least squares</subject><subject>Mathematical models</subject><subject>Meat</subject><subject>meat quality</subject><subject>Nondestructive testing</subject><subject>Original Paper</subject><subject>pH effects</subject><subject>pork</subject><subject>prediction</subject><subject>principal component analysis</subject><subject>Principal components analysis</subject><subject>Quality control</subject><subject>rapid methods</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Salting</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>swine</subject><subject>Wavelengths</subject><issn>1935-5130</issn><issn>1935-5149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxEAQRYMo-PwAVza4jnb1I5UsZVBnwBeM47bpJNVjhpiO3XHh35sxojtXVQXn3oKTJKfAL4BzvIwAhcKUg0pBCkz1TnIAhdSpBlXs_u6S7yeHMW44z7gCeZC8PgWqm2pofMe8YzPf-sBsV7N-vr2Xth2oZk8-VE1H7J7sENkqNt2avTSxKVv6hh_IhnTRuWDHNjb_7CnEnqoh2JYt3ux65I-TPWfbSCc_8yhZ3Vw_z-bp3ePtYnZ1l1YKsyFFIsyVRqgECU41L3PnpIAatKasRO1sIQRmNQpZVRZQlRyBctJ5nWHp5FFyPvX2wb9_UBzMxn-EbnxphAKOiEWejRRMVBV8jIGc6UPzZsOnAW62Qs0k1IxCzVao0WNGTJk4st2awl_zf6GzKeSsN3YdmmhWSzECnANKJbX8AvRSgR8</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Liu, Dan</creator><creator>Ma, Ji</creator><creator>Sun, Da-Wen</creator><creator>Pu, Hongbin</creator><creator>Gao, Wenhong</creator><creator>Qu, Jiahuan</creator><creator>Zeng, Xin-An</creator><general>Springer-Verlag</general><general>Springer US</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20141101</creationdate><title>Prediction of Color and pH of Salted Porcine Meats Using Visible and Near-Infrared Hyperspectral Imaging</title><author>Liu, Dan ; Ma, Ji ; Sun, Da-Wen ; Pu, Hongbin ; Gao, Wenhong ; Qu, Jiahuan ; Zeng, Xin-An</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-7ee784571c2e20ed0b8ff321d155e6b75fa92276d723cca174b071e8e58d67bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agriculture</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Color</topic><topic>Food Science</topic><topic>hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>Infrared imaging</topic><topic>least squares</topic><topic>Mathematical models</topic><topic>Meat</topic><topic>meat quality</topic><topic>Nondestructive testing</topic><topic>Original Paper</topic><topic>pH effects</topic><topic>pork</topic><topic>prediction</topic><topic>principal component analysis</topic><topic>Principal components analysis</topic><topic>Quality control</topic><topic>rapid methods</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Salting</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>swine</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Ma, Ji</creatorcontrib><creatorcontrib>Sun, Da-Wen</creatorcontrib><creatorcontrib>Pu, Hongbin</creatorcontrib><creatorcontrib>Gao, Wenhong</creatorcontrib><creatorcontrib>Qu, Jiahuan</creatorcontrib><creatorcontrib>Zeng, Xin-An</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agriculture Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Food and bioprocess technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dan</au><au>Ma, Ji</au><au>Sun, Da-Wen</au><au>Pu, Hongbin</au><au>Gao, Wenhong</au><au>Qu, Jiahuan</au><au>Zeng, Xin-An</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Color and pH of Salted Porcine Meats Using Visible and Near-Infrared Hyperspectral Imaging</atitle><jtitle>Food and bioprocess technology</jtitle><stitle>Food Bioprocess Technol</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>7</volume><issue>11</issue><spage>3100</spage><epage>3108</epage><pages>3100-3108</pages><issn>1935-5130</issn><eissn>1935-5149</eissn><abstract>A quick, accurate, and reliable method for the evaluation of meat quality during salting stages is essential for quality control and management. This study was carried out to investigate the utility of hyperspectral imaging (HSI) techniques (400–1,000 nm) for predicting the color and pH of salted meat. Specifically, partial least squares regression (PLSR) was applied to the spectral data extracted from the images of the meat to develop statistical models for predicting color and pH. A subset of information-rich wavelengths was identified by principal component analysis (PCA) and used in a regression model. The results from the model with the reduced number of wavelengths generated L*, a*, and pH values with coefficients of determination (R ² cᵥ) of 0.723, 0.726, and 0.86 and root mean square errors estimated by cross-validation (RMSECV) of 2.898, 1.408, and 0.073, respectively. These values compared favorably with values generated by a PLSR model using all of the wavelengths investigated, illustrating the reasonable accuracy and robustness of the method. The overall results of this study demonstrate the potential of HSI to serve as an objective and nondestructive method for rapid determination of color and pH of porcine meat during the salting process.</abstract><cop>Boston</cop><pub>Springer-Verlag</pub><doi>10.1007/s11947-014-1327-5</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1935-5130
ispartof Food and bioprocess technology, 2014-11, Vol.7 (11), p.3100-3108
issn 1935-5130
1935-5149
language eng
recordid cdi_proquest_journals_2410777986
source Springer Link
subjects Agriculture
Biotechnology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Color
Food Science
hyperspectral imagery
Hyperspectral imaging
Infrared imaging
least squares
Mathematical models
Meat
meat quality
Nondestructive testing
Original Paper
pH effects
pork
prediction
principal component analysis
Principal components analysis
Quality control
rapid methods
Regression analysis
Regression models
Salting
Statistical analysis
Statistical models
swine
Wavelengths
title Prediction of Color and pH of Salted Porcine Meats Using Visible and Near-Infrared Hyperspectral Imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Color%20and%20pH%20of%20Salted%20Porcine%20Meats%20Using%20Visible%20and%20Near-Infrared%20Hyperspectral%20Imaging&rft.jtitle=Food%20and%20bioprocess%20technology&rft.au=Liu,%20Dan&rft.date=2014-11-01&rft.volume=7&rft.issue=11&rft.spage=3100&rft.epage=3108&rft.pages=3100-3108&rft.issn=1935-5130&rft.eissn=1935-5149&rft_id=info:doi/10.1007/s11947-014-1327-5&rft_dat=%3Cproquest_cross%3E2410777986%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-7ee784571c2e20ed0b8ff321d155e6b75fa92276d723cca174b071e8e58d67bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2410777986&rft_id=info:pmid/&rfr_iscdi=true