Loading…

Using High-Pressure Processing for Reduction of Proteolysis and Prevention of Over-ripening of Raw Milk Cheese

High-pressure-processing (HPP) at 400 or 600 MPa was applied to cheeses made from ewe raw milk, on days 21 or 35 after manufacturing, to reduce proteolysis and prevent over-ripening. The characteristics of HPP and non-pressurized (control) cheeses were compared during ripening at 8 °C until day 60 a...

Full description

Saved in:
Bibliographic Details
Published in:Food and bioprocess technology 2014-05, Vol.7 (5), p.1404-1413
Main Authors: Calzada, Javier, del Olmo, Ana, Picon, Antonia, Gaya, Pilar, Nuñez, Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-pressure-processing (HPP) at 400 or 600 MPa was applied to cheeses made from ewe raw milk, on days 21 or 35 after manufacturing, to reduce proteolysis and prevent over-ripening. The characteristics of HPP and non-pressurized (control) cheeses were compared during ripening at 8 °C until day 60 and further storage at 4 °C until day 240. HPP and control cheeses showed similar pH values throughout ripening, but on day 240 pH values remained 0.4–0.6 units lower for HPP cheeses than for the control cheeses. Casein degradation was significantly retarded in the 600 MPa cheeses. Their α-casein concentration was 48–52 % higher on day 60 and 30–33 % higher on day 240 than in the control cheeses while β-casein concentration was 25–26 % higher on day 60 and 100–103 % higher on day 240. No significant differences in para-κ-casein concentration between cheeses were found on day 60, but on day 240, it was 22–35 % higher in the 600 MPa cheeses than in the control cheese. Hydrophilic peptides, hydrophobic peptides and total free amino acids evolved similarly in HPP and control cheeses during the 60-day ripening period. However, on day 240 hydrophilic peptides were at 34–39 % lower levels in the 600 MPa cheeses than in the control cheeses, hydrophobic peptides at 7–16 % lower levels and total free amino acids at 25–29 % lower levels. Flavour intensity scores increased at a slower rate in HPP cheeses than in the control cheese. Flavour quality declined markedly in the control cheeses during refrigerated storage while it did not vary significantly in 600 MPa cheeses.
ISSN:1935-5130
1935-5149
DOI:10.1007/s11947-013-1141-5