Loading…

Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol

Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors. Substitutional doping of the wurtzite ZnO nanoparticles with 5 mol% Mg( ii ), Al( iii ) and Cu( i ) is achieved by the addition of sub-stoichiometr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-06, Vol.8 (22), p.11282-11291
Main Authors: Leung, Alice H. M, García-Trenco, Andrés, Phanopoulos, Andreas, Regoutz, Anna, Schuster, Manfred E, Pike, Sebastian D, Shaffer, Milo S. P, Williams, Charlotte K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-64a0ef777e74247a2cf308c087fb43e88d3d2f0e004cef90c72ca4881a7861ef3
cites cdi_FETCH-LOGICAL-c380t-64a0ef777e74247a2cf308c087fb43e88d3d2f0e004cef90c72ca4881a7861ef3
container_end_page 11291
container_issue 22
container_start_page 11282
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Leung, Alice H. M
García-Trenco, Andrés
Phanopoulos, Andreas
Regoutz, Anna
Schuster, Manfred E
Pike, Sebastian D
Shaffer, Milo S. P
Williams, Charlotte K
description Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors. Substitutional doping of the wurtzite ZnO nanoparticles with 5 mol% Mg( ii ), Al( iii ) and Cu( i ) is achieved by the addition of sub-stoichiometric amounts of the appropriate dopant [( n -butyl)( sec -butyl)magnesium, triethylaluminium or mesitylcopper] to diethylzinc in the precursor mixture. After hydrolysis, the resulting colloidal nanoparticles (sizes of 2-3 nm) are characterised by powder X-ray crystallography, transmission electron microscopy, inductively-coupled plasma optical emission spectrometry and X-ray photoelectron spectroscopy. A solution of the doped-ZnO nanoparticles and colloidal Cu(0) nanoparticles [M:ZnO : Cu = 1 : 1] are applied as catalysts for the hydrogenation of CO 2 to methanol in a liquid-phase continuous flow stirred tank reactor [210 °C, 50 bar, CO 2  : H 2 = 1 : 3, 150 mL min −1 , mesitylene, 20 h]. All the catalyst systems display higher rates of methanol production and better stability than a benchmark heterogeneous catalyst, Cu-ZnO-Al 2 O 3 [480 μmol mmol metal −1 h −1 ], with approximately twice the activity for the Al( iii )-doped nanocatalyst. Despite outperforming the benchmark catalyst, Mg( ii ) doping is detrimental towards methanol production in comparison to undoped ZnO. X-Ray photoelectron spectroscopy and transmission electron microscopy analysis of the most active post-catalysis samples implicate the migration of Al( iii ) to the catalyst surface, and this surface enrichment is proposed to facilitate stabilisation of the catalytic ZnO/Cu interfaces. Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors.
doi_str_mv 10.1039/d0ta00509f
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2410995811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410995811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-64a0ef777e74247a2cf308c087fb43e88d3d2f0e004cef90c72ca4881a7861ef3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxRdRsFQv3oWIF5WunexuN4ngoaxWhZZe6sXLkuaj3bLd1CQL9r83tlJvzmXe8H7MMC-KLjDcY0hZX4LnAANg-ijqJEHEJGP58UFTehqdO7eCUBQgZ6wTNUXbnzx8NFN0M0GPaLLooWHdQ0V7i4Spa1NJXqOGN0Zwz-ut8w5pY5FfKuRM3frKNGi5ldYsVMN3k9FIcDsPSlbmq5IKeYPWyi_DkvosOtG8dur8t3ej99HzrHiNx9OXt2I4jkVKwcd5xkFpQogiWZIRngidAhVAiZ5nqaJUpjLRoAAyoTQDQRLBw3-YE5pjpdNudL3fu7Hms1XOlyvT2iacLJMMA2MDinGg7vaUsMY5q3S5sdWa222JofyJtHyC2XAX6SjAl3vYOnHg_iIP_tV_frmROv0G2QR85w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410995811</pqid></control><display><type>article</type><title>Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Leung, Alice H. M ; García-Trenco, Andrés ; Phanopoulos, Andreas ; Regoutz, Anna ; Schuster, Manfred E ; Pike, Sebastian D ; Shaffer, Milo S. P ; Williams, Charlotte K</creator><creatorcontrib>Leung, Alice H. M ; García-Trenco, Andrés ; Phanopoulos, Andreas ; Regoutz, Anna ; Schuster, Manfred E ; Pike, Sebastian D ; Shaffer, Milo S. P ; Williams, Charlotte K</creatorcontrib><description>Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors. Substitutional doping of the wurtzite ZnO nanoparticles with 5 mol% Mg( ii ), Al( iii ) and Cu( i ) is achieved by the addition of sub-stoichiometric amounts of the appropriate dopant [( n -butyl)( sec -butyl)magnesium, triethylaluminium or mesitylcopper] to diethylzinc in the precursor mixture. After hydrolysis, the resulting colloidal nanoparticles (sizes of 2-3 nm) are characterised by powder X-ray crystallography, transmission electron microscopy, inductively-coupled plasma optical emission spectrometry and X-ray photoelectron spectroscopy. A solution of the doped-ZnO nanoparticles and colloidal Cu(0) nanoparticles [M:ZnO : Cu = 1 : 1] are applied as catalysts for the hydrogenation of CO 2 to methanol in a liquid-phase continuous flow stirred tank reactor [210 °C, 50 bar, CO 2  : H 2 = 1 : 3, 150 mL min −1 , mesitylene, 20 h]. All the catalyst systems display higher rates of methanol production and better stability than a benchmark heterogeneous catalyst, Cu-ZnO-Al 2 O 3 [480 μmol mmol metal −1 h −1 ], with approximately twice the activity for the Al( iii )-doped nanocatalyst. Despite outperforming the benchmark catalyst, Mg( ii ) doping is detrimental towards methanol production in comparison to undoped ZnO. X-Ray photoelectron spectroscopy and transmission electron microscopy analysis of the most active post-catalysis samples implicate the migration of Al( iii ) to the catalyst surface, and this surface enrichment is proposed to facilitate stabilisation of the catalytic ZnO/Cu interfaces. Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta00509f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum oxide ; Benchmarks ; Carbon dioxide ; Catalysis ; Catalysts ; Colloids ; Continuous flow ; Continuously stirred tank reactors ; Copper ; Crystallography ; Dopants ; Doping ; Hydrogenation ; Hydrolysis ; Inductively coupled plasma ; Interfaces ; Liquid phases ; Magnesium ; Mesitylene ; Methanol ; Nanocatalysis ; Nanoparticles ; Optical emission spectroscopy ; Photoelectron spectroscopy ; Photoelectrons ; Selectivity ; Spectrometry ; Spectroscopy ; Transmission electron microscopy ; X ray photoelectron spectroscopy ; X-ray crystallography</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-06, Vol.8 (22), p.11282-11291</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-64a0ef777e74247a2cf308c087fb43e88d3d2f0e004cef90c72ca4881a7861ef3</citedby><cites>FETCH-LOGICAL-c380t-64a0ef777e74247a2cf308c087fb43e88d3d2f0e004cef90c72ca4881a7861ef3</cites><orcidid>0000-0002-3747-3763 ; 0000-0002-9791-5244 ; 0000-0002-0734-1575 ; 0000-0002-1572-5560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Leung, Alice H. M</creatorcontrib><creatorcontrib>García-Trenco, Andrés</creatorcontrib><creatorcontrib>Phanopoulos, Andreas</creatorcontrib><creatorcontrib>Regoutz, Anna</creatorcontrib><creatorcontrib>Schuster, Manfred E</creatorcontrib><creatorcontrib>Pike, Sebastian D</creatorcontrib><creatorcontrib>Shaffer, Milo S. P</creatorcontrib><creatorcontrib>Williams, Charlotte K</creatorcontrib><title>Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors. Substitutional doping of the wurtzite ZnO nanoparticles with 5 mol% Mg( ii ), Al( iii ) and Cu( i ) is achieved by the addition of sub-stoichiometric amounts of the appropriate dopant [( n -butyl)( sec -butyl)magnesium, triethylaluminium or mesitylcopper] to diethylzinc in the precursor mixture. After hydrolysis, the resulting colloidal nanoparticles (sizes of 2-3 nm) are characterised by powder X-ray crystallography, transmission electron microscopy, inductively-coupled plasma optical emission spectrometry and X-ray photoelectron spectroscopy. A solution of the doped-ZnO nanoparticles and colloidal Cu(0) nanoparticles [M:ZnO : Cu = 1 : 1] are applied as catalysts for the hydrogenation of CO 2 to methanol in a liquid-phase continuous flow stirred tank reactor [210 °C, 50 bar, CO 2  : H 2 = 1 : 3, 150 mL min −1 , mesitylene, 20 h]. All the catalyst systems display higher rates of methanol production and better stability than a benchmark heterogeneous catalyst, Cu-ZnO-Al 2 O 3 [480 μmol mmol metal −1 h −1 ], with approximately twice the activity for the Al( iii )-doped nanocatalyst. Despite outperforming the benchmark catalyst, Mg( ii ) doping is detrimental towards methanol production in comparison to undoped ZnO. X-Ray photoelectron spectroscopy and transmission electron microscopy analysis of the most active post-catalysis samples implicate the migration of Al( iii ) to the catalyst surface, and this surface enrichment is proposed to facilitate stabilisation of the catalytic ZnO/Cu interfaces. Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors.</description><subject>Aluminum oxide</subject><subject>Benchmarks</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Colloids</subject><subject>Continuous flow</subject><subject>Continuously stirred tank reactors</subject><subject>Copper</subject><subject>Crystallography</subject><subject>Dopants</subject><subject>Doping</subject><subject>Hydrogenation</subject><subject>Hydrolysis</subject><subject>Inductively coupled plasma</subject><subject>Interfaces</subject><subject>Liquid phases</subject><subject>Magnesium</subject><subject>Mesitylene</subject><subject>Methanol</subject><subject>Nanocatalysis</subject><subject>Nanoparticles</subject><subject>Optical emission spectroscopy</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Selectivity</subject><subject>Spectrometry</subject><subject>Spectroscopy</subject><subject>Transmission electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray crystallography</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxRdRsFQv3oWIF5WunexuN4ngoaxWhZZe6sXLkuaj3bLd1CQL9r83tlJvzmXe8H7MMC-KLjDcY0hZX4LnAANg-ijqJEHEJGP58UFTehqdO7eCUBQgZ6wTNUXbnzx8NFN0M0GPaLLooWHdQ0V7i4Spa1NJXqOGN0Zwz-ut8w5pY5FfKuRM3frKNGi5ldYsVMN3k9FIcDsPSlbmq5IKeYPWyi_DkvosOtG8dur8t3ej99HzrHiNx9OXt2I4jkVKwcd5xkFpQogiWZIRngidAhVAiZ5nqaJUpjLRoAAyoTQDQRLBw3-YE5pjpdNudL3fu7Hms1XOlyvT2iacLJMMA2MDinGg7vaUsMY5q3S5sdWa222JofyJtHyC2XAX6SjAl3vYOnHg_iIP_tV_frmROv0G2QR85w</recordid><startdate>20200614</startdate><enddate>20200614</enddate><creator>Leung, Alice H. M</creator><creator>García-Trenco, Andrés</creator><creator>Phanopoulos, Andreas</creator><creator>Regoutz, Anna</creator><creator>Schuster, Manfred E</creator><creator>Pike, Sebastian D</creator><creator>Shaffer, Milo S. P</creator><creator>Williams, Charlotte K</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3747-3763</orcidid><orcidid>https://orcid.org/0000-0002-9791-5244</orcidid><orcidid>https://orcid.org/0000-0002-0734-1575</orcidid><orcidid>https://orcid.org/0000-0002-1572-5560</orcidid></search><sort><creationdate>20200614</creationdate><title>Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol</title><author>Leung, Alice H. M ; García-Trenco, Andrés ; Phanopoulos, Andreas ; Regoutz, Anna ; Schuster, Manfred E ; Pike, Sebastian D ; Shaffer, Milo S. P ; Williams, Charlotte K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-64a0ef777e74247a2cf308c087fb43e88d3d2f0e004cef90c72ca4881a7861ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Benchmarks</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Colloids</topic><topic>Continuous flow</topic><topic>Continuously stirred tank reactors</topic><topic>Copper</topic><topic>Crystallography</topic><topic>Dopants</topic><topic>Doping</topic><topic>Hydrogenation</topic><topic>Hydrolysis</topic><topic>Inductively coupled plasma</topic><topic>Interfaces</topic><topic>Liquid phases</topic><topic>Magnesium</topic><topic>Mesitylene</topic><topic>Methanol</topic><topic>Nanocatalysis</topic><topic>Nanoparticles</topic><topic>Optical emission spectroscopy</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Selectivity</topic><topic>Spectrometry</topic><topic>Spectroscopy</topic><topic>Transmission electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, Alice H. M</creatorcontrib><creatorcontrib>García-Trenco, Andrés</creatorcontrib><creatorcontrib>Phanopoulos, Andreas</creatorcontrib><creatorcontrib>Regoutz, Anna</creatorcontrib><creatorcontrib>Schuster, Manfred E</creatorcontrib><creatorcontrib>Pike, Sebastian D</creatorcontrib><creatorcontrib>Shaffer, Milo S. P</creatorcontrib><creatorcontrib>Williams, Charlotte K</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, Alice H. M</au><au>García-Trenco, Andrés</au><au>Phanopoulos, Andreas</au><au>Regoutz, Anna</au><au>Schuster, Manfred E</au><au>Pike, Sebastian D</au><au>Shaffer, Milo S. P</au><au>Williams, Charlotte K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-06-14</date><risdate>2020</risdate><volume>8</volume><issue>22</issue><spage>11282</spage><epage>11291</epage><pages>11282-11291</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors. Substitutional doping of the wurtzite ZnO nanoparticles with 5 mol% Mg( ii ), Al( iii ) and Cu( i ) is achieved by the addition of sub-stoichiometric amounts of the appropriate dopant [( n -butyl)( sec -butyl)magnesium, triethylaluminium or mesitylcopper] to diethylzinc in the precursor mixture. After hydrolysis, the resulting colloidal nanoparticles (sizes of 2-3 nm) are characterised by powder X-ray crystallography, transmission electron microscopy, inductively-coupled plasma optical emission spectrometry and X-ray photoelectron spectroscopy. A solution of the doped-ZnO nanoparticles and colloidal Cu(0) nanoparticles [M:ZnO : Cu = 1 : 1] are applied as catalysts for the hydrogenation of CO 2 to methanol in a liquid-phase continuous flow stirred tank reactor [210 °C, 50 bar, CO 2  : H 2 = 1 : 3, 150 mL min −1 , mesitylene, 20 h]. All the catalyst systems display higher rates of methanol production and better stability than a benchmark heterogeneous catalyst, Cu-ZnO-Al 2 O 3 [480 μmol mmol metal −1 h −1 ], with approximately twice the activity for the Al( iii )-doped nanocatalyst. Despite outperforming the benchmark catalyst, Mg( ii ) doping is detrimental towards methanol production in comparison to undoped ZnO. X-Ray photoelectron spectroscopy and transmission electron microscopy analysis of the most active post-catalysis samples implicate the migration of Al( iii ) to the catalyst surface, and this surface enrichment is proposed to facilitate stabilisation of the catalytic ZnO/Cu interfaces. Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta00509f</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3747-3763</orcidid><orcidid>https://orcid.org/0000-0002-9791-5244</orcidid><orcidid>https://orcid.org/0000-0002-0734-1575</orcidid><orcidid>https://orcid.org/0000-0002-1572-5560</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-06, Vol.8 (22), p.11282-11291
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2410995811
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Aluminum oxide
Benchmarks
Carbon dioxide
Catalysis
Catalysts
Colloids
Continuous flow
Continuously stirred tank reactors
Copper
Crystallography
Dopants
Doping
Hydrogenation
Hydrolysis
Inductively coupled plasma
Interfaces
Liquid phases
Magnesium
Mesitylene
Methanol
Nanocatalysis
Nanoparticles
Optical emission spectroscopy
Photoelectron spectroscopy
Photoelectrons
Selectivity
Spectrometry
Spectroscopy
Transmission electron microscopy
X ray photoelectron spectroscopy
X-ray crystallography
title Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu/M:ZnO%20(M%20=%20Mg,%20Al,%20Cu)%20colloidal%20nanocatalysts%20for%20the%20solution%20hydrogenation%20of%20carbon%20dioxide%20to%20methanol&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Leung,%20Alice%20H.%20M&rft.date=2020-06-14&rft.volume=8&rft.issue=22&rft.spage=11282&rft.epage=11291&rft.pages=11282-11291&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta00509f&rft_dat=%3Cproquest_rsc_p%3E2410995811%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-64a0ef777e74247a2cf308c087fb43e88d3d2f0e004cef90c72ca4881a7861ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2410995811&rft_id=info:pmid/&rfr_iscdi=true