Loading…
Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol
Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors. Substitutional doping of the wurtzite ZnO nanoparticles with 5 mol% Mg( ii ), Al( iii ) and Cu( i ) is achieved by the addition of sub-stoichiometr...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-06, Vol.8 (22), p.11282-11291 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-64a0ef777e74247a2cf308c087fb43e88d3d2f0e004cef90c72ca4881a7861ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-64a0ef777e74247a2cf308c087fb43e88d3d2f0e004cef90c72ca4881a7861ef3 |
container_end_page | 11291 |
container_issue | 22 |
container_start_page | 11282 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Leung, Alice H. M García-Trenco, Andrés Phanopoulos, Andreas Regoutz, Anna Schuster, Manfred E Pike, Sebastian D Shaffer, Milo S. P Williams, Charlotte K |
description | Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors. Substitutional doping of the wurtzite ZnO nanoparticles with 5 mol% Mg(
ii
), Al(
iii
) and Cu(
i
) is achieved by the addition of sub-stoichiometric amounts of the appropriate dopant [(
n
-butyl)(
sec
-butyl)magnesium, triethylaluminium or mesitylcopper] to diethylzinc in the precursor mixture. After hydrolysis, the resulting colloidal nanoparticles (sizes of 2-3 nm) are characterised by powder X-ray crystallography, transmission electron microscopy, inductively-coupled plasma optical emission spectrometry and X-ray photoelectron spectroscopy. A solution of the doped-ZnO nanoparticles and colloidal Cu(0) nanoparticles [M:ZnO : Cu = 1 : 1] are applied as catalysts for the hydrogenation of CO
2
to methanol in a liquid-phase continuous flow stirred tank reactor [210 °C, 50 bar, CO
2
: H
2
= 1 : 3, 150 mL min
−1
, mesitylene, 20 h]. All the catalyst systems display higher rates of methanol production and better stability than a benchmark heterogeneous catalyst, Cu-ZnO-Al
2
O
3
[480 μmol mmol
metal
−1
h
−1
], with approximately twice the activity for the Al(
iii
)-doped nanocatalyst. Despite outperforming the benchmark catalyst, Mg(
ii
) doping is detrimental towards methanol production in comparison to undoped ZnO. X-Ray photoelectron spectroscopy and transmission electron microscopy analysis of the most active post-catalysis samples implicate the migration of Al(
iii
) to the catalyst surface, and this surface enrichment is proposed to facilitate stabilisation of the catalytic ZnO/Cu interfaces.
Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors. |
doi_str_mv | 10.1039/d0ta00509f |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2410995811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410995811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-64a0ef777e74247a2cf308c087fb43e88d3d2f0e004cef90c72ca4881a7861ef3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxRdRsFQv3oWIF5WunexuN4ngoaxWhZZe6sXLkuaj3bLd1CQL9r83tlJvzmXe8H7MMC-KLjDcY0hZX4LnAANg-ijqJEHEJGP58UFTehqdO7eCUBQgZ6wTNUXbnzx8NFN0M0GPaLLooWHdQ0V7i4Spa1NJXqOGN0Zwz-ut8w5pY5FfKuRM3frKNGi5ldYsVMN3k9FIcDsPSlbmq5IKeYPWyi_DkvosOtG8dur8t3ej99HzrHiNx9OXt2I4jkVKwcd5xkFpQogiWZIRngidAhVAiZ5nqaJUpjLRoAAyoTQDQRLBw3-YE5pjpdNudL3fu7Hms1XOlyvT2iacLJMMA2MDinGg7vaUsMY5q3S5sdWa222JofyJtHyC2XAX6SjAl3vYOnHg_iIP_tV_frmROv0G2QR85w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410995811</pqid></control><display><type>article</type><title>Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Leung, Alice H. M ; García-Trenco, Andrés ; Phanopoulos, Andreas ; Regoutz, Anna ; Schuster, Manfred E ; Pike, Sebastian D ; Shaffer, Milo S. P ; Williams, Charlotte K</creator><creatorcontrib>Leung, Alice H. M ; García-Trenco, Andrés ; Phanopoulos, Andreas ; Regoutz, Anna ; Schuster, Manfred E ; Pike, Sebastian D ; Shaffer, Milo S. P ; Williams, Charlotte K</creatorcontrib><description>Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors. Substitutional doping of the wurtzite ZnO nanoparticles with 5 mol% Mg(
ii
), Al(
iii
) and Cu(
i
) is achieved by the addition of sub-stoichiometric amounts of the appropriate dopant [(
n
-butyl)(
sec
-butyl)magnesium, triethylaluminium or mesitylcopper] to diethylzinc in the precursor mixture. After hydrolysis, the resulting colloidal nanoparticles (sizes of 2-3 nm) are characterised by powder X-ray crystallography, transmission electron microscopy, inductively-coupled plasma optical emission spectrometry and X-ray photoelectron spectroscopy. A solution of the doped-ZnO nanoparticles and colloidal Cu(0) nanoparticles [M:ZnO : Cu = 1 : 1] are applied as catalysts for the hydrogenation of CO
2
to methanol in a liquid-phase continuous flow stirred tank reactor [210 °C, 50 bar, CO
2
: H
2
= 1 : 3, 150 mL min
−1
, mesitylene, 20 h]. All the catalyst systems display higher rates of methanol production and better stability than a benchmark heterogeneous catalyst, Cu-ZnO-Al
2
O
3
[480 μmol mmol
metal
−1
h
−1
], with approximately twice the activity for the Al(
iii
)-doped nanocatalyst. Despite outperforming the benchmark catalyst, Mg(
ii
) doping is detrimental towards methanol production in comparison to undoped ZnO. X-Ray photoelectron spectroscopy and transmission electron microscopy analysis of the most active post-catalysis samples implicate the migration of Al(
iii
) to the catalyst surface, and this surface enrichment is proposed to facilitate stabilisation of the catalytic ZnO/Cu interfaces.
Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta00509f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum oxide ; Benchmarks ; Carbon dioxide ; Catalysis ; Catalysts ; Colloids ; Continuous flow ; Continuously stirred tank reactors ; Copper ; Crystallography ; Dopants ; Doping ; Hydrogenation ; Hydrolysis ; Inductively coupled plasma ; Interfaces ; Liquid phases ; Magnesium ; Mesitylene ; Methanol ; Nanocatalysis ; Nanoparticles ; Optical emission spectroscopy ; Photoelectron spectroscopy ; Photoelectrons ; Selectivity ; Spectrometry ; Spectroscopy ; Transmission electron microscopy ; X ray photoelectron spectroscopy ; X-ray crystallography</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-06, Vol.8 (22), p.11282-11291</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-64a0ef777e74247a2cf308c087fb43e88d3d2f0e004cef90c72ca4881a7861ef3</citedby><cites>FETCH-LOGICAL-c380t-64a0ef777e74247a2cf308c087fb43e88d3d2f0e004cef90c72ca4881a7861ef3</cites><orcidid>0000-0002-3747-3763 ; 0000-0002-9791-5244 ; 0000-0002-0734-1575 ; 0000-0002-1572-5560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Leung, Alice H. M</creatorcontrib><creatorcontrib>García-Trenco, Andrés</creatorcontrib><creatorcontrib>Phanopoulos, Andreas</creatorcontrib><creatorcontrib>Regoutz, Anna</creatorcontrib><creatorcontrib>Schuster, Manfred E</creatorcontrib><creatorcontrib>Pike, Sebastian D</creatorcontrib><creatorcontrib>Shaffer, Milo S. P</creatorcontrib><creatorcontrib>Williams, Charlotte K</creatorcontrib><title>Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors. Substitutional doping of the wurtzite ZnO nanoparticles with 5 mol% Mg(
ii
), Al(
iii
) and Cu(
i
) is achieved by the addition of sub-stoichiometric amounts of the appropriate dopant [(
n
-butyl)(
sec
-butyl)magnesium, triethylaluminium or mesitylcopper] to diethylzinc in the precursor mixture. After hydrolysis, the resulting colloidal nanoparticles (sizes of 2-3 nm) are characterised by powder X-ray crystallography, transmission electron microscopy, inductively-coupled plasma optical emission spectrometry and X-ray photoelectron spectroscopy. A solution of the doped-ZnO nanoparticles and colloidal Cu(0) nanoparticles [M:ZnO : Cu = 1 : 1] are applied as catalysts for the hydrogenation of CO
2
to methanol in a liquid-phase continuous flow stirred tank reactor [210 °C, 50 bar, CO
2
: H
2
= 1 : 3, 150 mL min
−1
, mesitylene, 20 h]. All the catalyst systems display higher rates of methanol production and better stability than a benchmark heterogeneous catalyst, Cu-ZnO-Al
2
O
3
[480 μmol mmol
metal
−1
h
−1
], with approximately twice the activity for the Al(
iii
)-doped nanocatalyst. Despite outperforming the benchmark catalyst, Mg(
ii
) doping is detrimental towards methanol production in comparison to undoped ZnO. X-Ray photoelectron spectroscopy and transmission electron microscopy analysis of the most active post-catalysis samples implicate the migration of Al(
iii
) to the catalyst surface, and this surface enrichment is proposed to facilitate stabilisation of the catalytic ZnO/Cu interfaces.
Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors.</description><subject>Aluminum oxide</subject><subject>Benchmarks</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Colloids</subject><subject>Continuous flow</subject><subject>Continuously stirred tank reactors</subject><subject>Copper</subject><subject>Crystallography</subject><subject>Dopants</subject><subject>Doping</subject><subject>Hydrogenation</subject><subject>Hydrolysis</subject><subject>Inductively coupled plasma</subject><subject>Interfaces</subject><subject>Liquid phases</subject><subject>Magnesium</subject><subject>Mesitylene</subject><subject>Methanol</subject><subject>Nanocatalysis</subject><subject>Nanoparticles</subject><subject>Optical emission spectroscopy</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Selectivity</subject><subject>Spectrometry</subject><subject>Spectroscopy</subject><subject>Transmission electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray crystallography</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxRdRsFQv3oWIF5WunexuN4ngoaxWhZZe6sXLkuaj3bLd1CQL9r83tlJvzmXe8H7MMC-KLjDcY0hZX4LnAANg-ijqJEHEJGP58UFTehqdO7eCUBQgZ6wTNUXbnzx8NFN0M0GPaLLooWHdQ0V7i4Spa1NJXqOGN0Zwz-ut8w5pY5FfKuRM3frKNGi5ldYsVMN3k9FIcDsPSlbmq5IKeYPWyi_DkvosOtG8dur8t3ej99HzrHiNx9OXt2I4jkVKwcd5xkFpQogiWZIRngidAhVAiZ5nqaJUpjLRoAAyoTQDQRLBw3-YE5pjpdNudL3fu7Hms1XOlyvT2iacLJMMA2MDinGg7vaUsMY5q3S5sdWa222JofyJtHyC2XAX6SjAl3vYOnHg_iIP_tV_frmROv0G2QR85w</recordid><startdate>20200614</startdate><enddate>20200614</enddate><creator>Leung, Alice H. M</creator><creator>García-Trenco, Andrés</creator><creator>Phanopoulos, Andreas</creator><creator>Regoutz, Anna</creator><creator>Schuster, Manfred E</creator><creator>Pike, Sebastian D</creator><creator>Shaffer, Milo S. P</creator><creator>Williams, Charlotte K</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3747-3763</orcidid><orcidid>https://orcid.org/0000-0002-9791-5244</orcidid><orcidid>https://orcid.org/0000-0002-0734-1575</orcidid><orcidid>https://orcid.org/0000-0002-1572-5560</orcidid></search><sort><creationdate>20200614</creationdate><title>Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol</title><author>Leung, Alice H. M ; García-Trenco, Andrés ; Phanopoulos, Andreas ; Regoutz, Anna ; Schuster, Manfred E ; Pike, Sebastian D ; Shaffer, Milo S. P ; Williams, Charlotte K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-64a0ef777e74247a2cf308c087fb43e88d3d2f0e004cef90c72ca4881a7861ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Benchmarks</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Colloids</topic><topic>Continuous flow</topic><topic>Continuously stirred tank reactors</topic><topic>Copper</topic><topic>Crystallography</topic><topic>Dopants</topic><topic>Doping</topic><topic>Hydrogenation</topic><topic>Hydrolysis</topic><topic>Inductively coupled plasma</topic><topic>Interfaces</topic><topic>Liquid phases</topic><topic>Magnesium</topic><topic>Mesitylene</topic><topic>Methanol</topic><topic>Nanocatalysis</topic><topic>Nanoparticles</topic><topic>Optical emission spectroscopy</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Selectivity</topic><topic>Spectrometry</topic><topic>Spectroscopy</topic><topic>Transmission electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, Alice H. M</creatorcontrib><creatorcontrib>García-Trenco, Andrés</creatorcontrib><creatorcontrib>Phanopoulos, Andreas</creatorcontrib><creatorcontrib>Regoutz, Anna</creatorcontrib><creatorcontrib>Schuster, Manfred E</creatorcontrib><creatorcontrib>Pike, Sebastian D</creatorcontrib><creatorcontrib>Shaffer, Milo S. P</creatorcontrib><creatorcontrib>Williams, Charlotte K</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, Alice H. M</au><au>García-Trenco, Andrés</au><au>Phanopoulos, Andreas</au><au>Regoutz, Anna</au><au>Schuster, Manfred E</au><au>Pike, Sebastian D</au><au>Shaffer, Milo S. P</au><au>Williams, Charlotte K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-06-14</date><risdate>2020</risdate><volume>8</volume><issue>22</issue><spage>11282</spage><epage>11291</epage><pages>11282-11291</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors. Substitutional doping of the wurtzite ZnO nanoparticles with 5 mol% Mg(
ii
), Al(
iii
) and Cu(
i
) is achieved by the addition of sub-stoichiometric amounts of the appropriate dopant [(
n
-butyl)(
sec
-butyl)magnesium, triethylaluminium or mesitylcopper] to diethylzinc in the precursor mixture. After hydrolysis, the resulting colloidal nanoparticles (sizes of 2-3 nm) are characterised by powder X-ray crystallography, transmission electron microscopy, inductively-coupled plasma optical emission spectrometry and X-ray photoelectron spectroscopy. A solution of the doped-ZnO nanoparticles and colloidal Cu(0) nanoparticles [M:ZnO : Cu = 1 : 1] are applied as catalysts for the hydrogenation of CO
2
to methanol in a liquid-phase continuous flow stirred tank reactor [210 °C, 50 bar, CO
2
: H
2
= 1 : 3, 150 mL min
−1
, mesitylene, 20 h]. All the catalyst systems display higher rates of methanol production and better stability than a benchmark heterogeneous catalyst, Cu-ZnO-Al
2
O
3
[480 μmol mmol
metal
−1
h
−1
], with approximately twice the activity for the Al(
iii
)-doped nanocatalyst. Despite outperforming the benchmark catalyst, Mg(
ii
) doping is detrimental towards methanol production in comparison to undoped ZnO. X-Ray photoelectron spectroscopy and transmission electron microscopy analysis of the most active post-catalysis samples implicate the migration of Al(
iii
) to the catalyst surface, and this surface enrichment is proposed to facilitate stabilisation of the catalytic ZnO/Cu interfaces.
Doped-ZnO nanoparticles, capped with dioctylphosphinate ligands, are synthesised by the controlled hydrolysis of a mixture of organometallic precursors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta00509f</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3747-3763</orcidid><orcidid>https://orcid.org/0000-0002-9791-5244</orcidid><orcidid>https://orcid.org/0000-0002-0734-1575</orcidid><orcidid>https://orcid.org/0000-0002-1572-5560</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-06, Vol.8 (22), p.11282-11291 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2410995811 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Aluminum oxide Benchmarks Carbon dioxide Catalysis Catalysts Colloids Continuous flow Continuously stirred tank reactors Copper Crystallography Dopants Doping Hydrogenation Hydrolysis Inductively coupled plasma Interfaces Liquid phases Magnesium Mesitylene Methanol Nanocatalysis Nanoparticles Optical emission spectroscopy Photoelectron spectroscopy Photoelectrons Selectivity Spectrometry Spectroscopy Transmission electron microscopy X ray photoelectron spectroscopy X-ray crystallography |
title | Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu/M:ZnO%20(M%20=%20Mg,%20Al,%20Cu)%20colloidal%20nanocatalysts%20for%20the%20solution%20hydrogenation%20of%20carbon%20dioxide%20to%20methanol&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Leung,%20Alice%20H.%20M&rft.date=2020-06-14&rft.volume=8&rft.issue=22&rft.spage=11282&rft.epage=11291&rft.pages=11282-11291&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta00509f&rft_dat=%3Cproquest_rsc_p%3E2410995811%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-64a0ef777e74247a2cf308c087fb43e88d3d2f0e004cef90c72ca4881a7861ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2410995811&rft_id=info:pmid/&rfr_iscdi=true |