Loading…
Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell
We demonstrate the feasibility of algal lipid production and bioelectricity generation with concurrent treatment of municipal solid waste (MSW) leachate in a double-chamber algal-assisted microbial fuel cell (AAMFC). The cathode chamber was loaded with Synechococcus sp. and MSW leachate whereas anod...
Saved in:
Published in: | Applied biochemistry and biotechnology 2020-06, Vol.191 (2), p.852-866 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-a1f3133b5a49e0103839c3d6a7f814a43fe66656e1095031b937fd795a2952713 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-a1f3133b5a49e0103839c3d6a7f814a43fe66656e1095031b937fd795a2952713 |
container_end_page | 866 |
container_issue | 2 |
container_start_page | 852 |
container_title | Applied biochemistry and biotechnology |
container_volume | 191 |
creator | Lakshmidevi, Rajendran Gandhi, Nagarajan Nagendra Muthukumar, Karuppan |
description | We demonstrate the feasibility of algal lipid production and bioelectricity generation with concurrent treatment of municipal solid waste (MSW) leachate in a double-chamber algal-assisted microbial fuel cell (AAMFC). The cathode chamber was loaded with
Synechococcus
sp. and MSW leachate whereas anode chamber was loaded with anaerobic microflora. While treating 50% MSW leachate, highest power density (95.63 mW/m
2
), current density (2.48 A/m
2
), and biomass concentration (2.54 g/l) were observed. The algal growth in the cathode chamber increased the oxygen concentration from 5.5 to 8.6 mg/l. Secondly, we studied the influence of salinity in AAMFC performance. The addition of 30 mM NaCl with 50% leachate increased the power and current density to 110.92 mW/m
2
and 5.169 A/m
2
, respectively. It also increased the biomass concentration, protein, and lipid content. The analysis of fatty acid profile of algae confirmed the presence of palmitic acid, stearic acid, and linoleic acid. The proposed technique is effective for concurrent treatment of MSW leachate and power generation besides algal lipid production without external aeration. |
doi_str_mv | 10.1007/s12010-019-03160-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2411051172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411051172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-a1f3133b5a49e0103839c3d6a7f814a43fe66656e1095031b937fd795a2952713</originalsourceid><addsrcrecordid>eNp9kE1PwyAYx4nRuPnyBTwYEs9VHiilHJdlU5NNTXTxSGhLJwtrJ7SHxS8vuqk3TwT-L8_DD6ELINdAiLgJQAmQhIBMCIOMJPwADYHzeKUSDtGQUMESSnM5QCchrAgBmnNxjAYMJBEiJ0P0Mda-aBv8YPrOa4cnzpSdt6XttvjJt1VfdjbKtW_XeN43UdhE13PrbIVfdegMnummqq1zeGZ0-abjyyLYZolHbqldMgrBRleF57b0bWFjeNobh8fGuTN0VGsXzPn-PEWL6eRlfJfMHm_vx6NZUqZAu0RDzYCxgutUmvhhljNZsirTos4h1SmrTZZlPDNAJI8gCslEXQnJNZWcCmCn6GrXu_Hte29Cp1Zt75s4UtEUgHAAQaOL7lxxzxC8qdXG27X2WwVEffFWO94q8lbfvBWPoct9dV-sTfUb-QEcDWxnCFFqlsb_zf6n9hOenoos</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411051172</pqid></control><display><type>article</type><title>Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell</title><source>Springer Nature</source><creator>Lakshmidevi, Rajendran ; Gandhi, Nagarajan Nagendra ; Muthukumar, Karuppan</creator><creatorcontrib>Lakshmidevi, Rajendran ; Gandhi, Nagarajan Nagendra ; Muthukumar, Karuppan</creatorcontrib><description>We demonstrate the feasibility of algal lipid production and bioelectricity generation with concurrent treatment of municipal solid waste (MSW) leachate in a double-chamber algal-assisted microbial fuel cell (AAMFC). The cathode chamber was loaded with
Synechococcus
sp. and MSW leachate whereas anode chamber was loaded with anaerobic microflora. While treating 50% MSW leachate, highest power density (95.63 mW/m
2
), current density (2.48 A/m
2
), and biomass concentration (2.54 g/l) were observed. The algal growth in the cathode chamber increased the oxygen concentration from 5.5 to 8.6 mg/l. Secondly, we studied the influence of salinity in AAMFC performance. The addition of 30 mM NaCl with 50% leachate increased the power and current density to 110.92 mW/m
2
and 5.169 A/m
2
, respectively. It also increased the biomass concentration, protein, and lipid content. The analysis of fatty acid profile of algae confirmed the presence of palmitic acid, stearic acid, and linoleic acid. The proposed technique is effective for concurrent treatment of MSW leachate and power generation besides algal lipid production without external aeration.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-019-03160-5</identifier><identifier>PMID: 31907780</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aeration ; Algae ; Algal growth ; Anaerobic treatment ; Bacteria ; Bacterial leaching ; Biochemical fuel cells ; Biochemistry ; Bioelectric Energy Sources - microbiology ; Bioelectricity ; Biomass ; Biotechnology ; Carbon - chemistry ; Carbon neutrality ; Cathodes ; Chemistry ; Chemistry and Materials Science ; Current density ; Electric power generation ; Electricity ; Electrodes ; Fatty acids ; Fuel cells ; Fuel technology ; India ; Kinetics ; Landfills ; Leachates ; Linoleic acid ; Lipids ; Microflora ; Municipal landfills ; Municipal solid waste ; Municipal waste management ; Oxygen ; Palmitic acid ; Sodium chloride ; Solid Waste ; Solid waste management ; Stearic acid ; Synechococcus ; Waste Disposal Facilities ; Waste disposal sites ; Water Pollutants, Chemical</subject><ispartof>Applied biochemistry and biotechnology, 2020-06, Vol.191 (2), p.852-866</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-a1f3133b5a49e0103839c3d6a7f814a43fe66656e1095031b937fd795a2952713</citedby><cites>FETCH-LOGICAL-c412t-a1f3133b5a49e0103839c3d6a7f814a43fe66656e1095031b937fd795a2952713</cites><orcidid>0000-0002-2683-6039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31907780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakshmidevi, Rajendran</creatorcontrib><creatorcontrib>Gandhi, Nagarajan Nagendra</creatorcontrib><creatorcontrib>Muthukumar, Karuppan</creatorcontrib><title>Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>We demonstrate the feasibility of algal lipid production and bioelectricity generation with concurrent treatment of municipal solid waste (MSW) leachate in a double-chamber algal-assisted microbial fuel cell (AAMFC). The cathode chamber was loaded with
Synechococcus
sp. and MSW leachate whereas anode chamber was loaded with anaerobic microflora. While treating 50% MSW leachate, highest power density (95.63 mW/m
2
), current density (2.48 A/m
2
), and biomass concentration (2.54 g/l) were observed. The algal growth in the cathode chamber increased the oxygen concentration from 5.5 to 8.6 mg/l. Secondly, we studied the influence of salinity in AAMFC performance. The addition of 30 mM NaCl with 50% leachate increased the power and current density to 110.92 mW/m
2
and 5.169 A/m
2
, respectively. It also increased the biomass concentration, protein, and lipid content. The analysis of fatty acid profile of algae confirmed the presence of palmitic acid, stearic acid, and linoleic acid. The proposed technique is effective for concurrent treatment of MSW leachate and power generation besides algal lipid production without external aeration.</description><subject>Aeration</subject><subject>Algae</subject><subject>Algal growth</subject><subject>Anaerobic treatment</subject><subject>Bacteria</subject><subject>Bacterial leaching</subject><subject>Biochemical fuel cells</subject><subject>Biochemistry</subject><subject>Bioelectric Energy Sources - microbiology</subject><subject>Bioelectricity</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Carbon - chemistry</subject><subject>Carbon neutrality</subject><subject>Cathodes</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Current density</subject><subject>Electric power generation</subject><subject>Electricity</subject><subject>Electrodes</subject><subject>Fatty acids</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>India</subject><subject>Kinetics</subject><subject>Landfills</subject><subject>Leachates</subject><subject>Linoleic acid</subject><subject>Lipids</subject><subject>Microflora</subject><subject>Municipal landfills</subject><subject>Municipal solid waste</subject><subject>Municipal waste management</subject><subject>Oxygen</subject><subject>Palmitic acid</subject><subject>Sodium chloride</subject><subject>Solid Waste</subject><subject>Solid waste management</subject><subject>Stearic acid</subject><subject>Synechococcus</subject><subject>Waste Disposal Facilities</subject><subject>Waste disposal sites</subject><subject>Water Pollutants, Chemical</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwyAYx4nRuPnyBTwYEs9VHiilHJdlU5NNTXTxSGhLJwtrJ7SHxS8vuqk3TwT-L8_DD6ELINdAiLgJQAmQhIBMCIOMJPwADYHzeKUSDtGQUMESSnM5QCchrAgBmnNxjAYMJBEiJ0P0Mda-aBv8YPrOa4cnzpSdt6XttvjJt1VfdjbKtW_XeN43UdhE13PrbIVfdegMnummqq1zeGZ0-abjyyLYZolHbqldMgrBRleF57b0bWFjeNobh8fGuTN0VGsXzPn-PEWL6eRlfJfMHm_vx6NZUqZAu0RDzYCxgutUmvhhljNZsirTos4h1SmrTZZlPDNAJI8gCslEXQnJNZWcCmCn6GrXu_Hte29Cp1Zt75s4UtEUgHAAQaOL7lxxzxC8qdXG27X2WwVEffFWO94q8lbfvBWPoct9dV-sTfUb-QEcDWxnCFFqlsb_zf6n9hOenoos</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Lakshmidevi, Rajendran</creator><creator>Gandhi, Nagarajan Nagendra</creator><creator>Muthukumar, Karuppan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2683-6039</orcidid></search><sort><creationdate>20200601</creationdate><title>Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell</title><author>Lakshmidevi, Rajendran ; Gandhi, Nagarajan Nagendra ; Muthukumar, Karuppan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-a1f3133b5a49e0103839c3d6a7f814a43fe66656e1095031b937fd795a2952713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aeration</topic><topic>Algae</topic><topic>Algal growth</topic><topic>Anaerobic treatment</topic><topic>Bacteria</topic><topic>Bacterial leaching</topic><topic>Biochemical fuel cells</topic><topic>Biochemistry</topic><topic>Bioelectric Energy Sources - microbiology</topic><topic>Bioelectricity</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Carbon - chemistry</topic><topic>Carbon neutrality</topic><topic>Cathodes</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Current density</topic><topic>Electric power generation</topic><topic>Electricity</topic><topic>Electrodes</topic><topic>Fatty acids</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>India</topic><topic>Kinetics</topic><topic>Landfills</topic><topic>Leachates</topic><topic>Linoleic acid</topic><topic>Lipids</topic><topic>Microflora</topic><topic>Municipal landfills</topic><topic>Municipal solid waste</topic><topic>Municipal waste management</topic><topic>Oxygen</topic><topic>Palmitic acid</topic><topic>Sodium chloride</topic><topic>Solid Waste</topic><topic>Solid waste management</topic><topic>Stearic acid</topic><topic>Synechococcus</topic><topic>Waste Disposal Facilities</topic><topic>Waste disposal sites</topic><topic>Water Pollutants, Chemical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakshmidevi, Rajendran</creatorcontrib><creatorcontrib>Gandhi, Nagarajan Nagendra</creatorcontrib><creatorcontrib>Muthukumar, Karuppan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakshmidevi, Rajendran</au><au>Gandhi, Nagarajan Nagendra</au><au>Muthukumar, Karuppan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>191</volume><issue>2</issue><spage>852</spage><epage>866</epage><pages>852-866</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><abstract>We demonstrate the feasibility of algal lipid production and bioelectricity generation with concurrent treatment of municipal solid waste (MSW) leachate in a double-chamber algal-assisted microbial fuel cell (AAMFC). The cathode chamber was loaded with
Synechococcus
sp. and MSW leachate whereas anode chamber was loaded with anaerobic microflora. While treating 50% MSW leachate, highest power density (95.63 mW/m
2
), current density (2.48 A/m
2
), and biomass concentration (2.54 g/l) were observed. The algal growth in the cathode chamber increased the oxygen concentration from 5.5 to 8.6 mg/l. Secondly, we studied the influence of salinity in AAMFC performance. The addition of 30 mM NaCl with 50% leachate increased the power and current density to 110.92 mW/m
2
and 5.169 A/m
2
, respectively. It also increased the biomass concentration, protein, and lipid content. The analysis of fatty acid profile of algae confirmed the presence of palmitic acid, stearic acid, and linoleic acid. The proposed technique is effective for concurrent treatment of MSW leachate and power generation besides algal lipid production without external aeration.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31907780</pmid><doi>10.1007/s12010-019-03160-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2683-6039</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-2289 |
ispartof | Applied biochemistry and biotechnology, 2020-06, Vol.191 (2), p.852-866 |
issn | 0273-2289 1559-0291 |
language | eng |
recordid | cdi_proquest_journals_2411051172 |
source | Springer Nature |
subjects | Aeration Algae Algal growth Anaerobic treatment Bacteria Bacterial leaching Biochemical fuel cells Biochemistry Bioelectric Energy Sources - microbiology Bioelectricity Biomass Biotechnology Carbon - chemistry Carbon neutrality Cathodes Chemistry Chemistry and Materials Science Current density Electric power generation Electricity Electrodes Fatty acids Fuel cells Fuel technology India Kinetics Landfills Leachates Linoleic acid Lipids Microflora Municipal landfills Municipal solid waste Municipal waste management Oxygen Palmitic acid Sodium chloride Solid Waste Solid waste management Stearic acid Synechococcus Waste Disposal Facilities Waste disposal sites Water Pollutants, Chemical |
title | Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Neutral%20Electricity%20Production%20from%20Municipal%20Solid%20Waste%20Landfill%20Leachate%20Using%20Algal-Assisted%20Microbial%20Fuel%20Cell&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Lakshmidevi,%20Rajendran&rft.date=2020-06-01&rft.volume=191&rft.issue=2&rft.spage=852&rft.epage=866&rft.pages=852-866&rft.issn=0273-2289&rft.eissn=1559-0291&rft_id=info:doi/10.1007/s12010-019-03160-5&rft_dat=%3Cproquest_cross%3E2411051172%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-a1f3133b5a49e0103839c3d6a7f814a43fe66656e1095031b937fd795a2952713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2411051172&rft_id=info:pmid/31907780&rfr_iscdi=true |