Loading…

Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell

We demonstrate the feasibility of algal lipid production and bioelectricity generation with concurrent treatment of municipal solid waste (MSW) leachate in a double-chamber algal-assisted microbial fuel cell (AAMFC). The cathode chamber was loaded with Synechococcus sp. and MSW leachate whereas anod...

Full description

Saved in:
Bibliographic Details
Published in:Applied biochemistry and biotechnology 2020-06, Vol.191 (2), p.852-866
Main Authors: Lakshmidevi, Rajendran, Gandhi, Nagarajan Nagendra, Muthukumar, Karuppan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-a1f3133b5a49e0103839c3d6a7f814a43fe66656e1095031b937fd795a2952713
cites cdi_FETCH-LOGICAL-c412t-a1f3133b5a49e0103839c3d6a7f814a43fe66656e1095031b937fd795a2952713
container_end_page 866
container_issue 2
container_start_page 852
container_title Applied biochemistry and biotechnology
container_volume 191
creator Lakshmidevi, Rajendran
Gandhi, Nagarajan Nagendra
Muthukumar, Karuppan
description We demonstrate the feasibility of algal lipid production and bioelectricity generation with concurrent treatment of municipal solid waste (MSW) leachate in a double-chamber algal-assisted microbial fuel cell (AAMFC). The cathode chamber was loaded with Synechococcus sp. and MSW leachate whereas anode chamber was loaded with anaerobic microflora. While treating 50% MSW leachate, highest power density (95.63 mW/m 2 ), current density (2.48 A/m 2 ), and biomass concentration (2.54 g/l) were observed. The algal growth in the cathode chamber increased the oxygen concentration from 5.5 to 8.6 mg/l. Secondly, we studied the influence of salinity in AAMFC performance. The addition of 30 mM NaCl with 50% leachate increased the power and current density to 110.92 mW/m 2 and 5.169 A/m 2 , respectively. It also increased the biomass concentration, protein, and lipid content. The analysis of fatty acid profile of algae confirmed the presence of palmitic acid, stearic acid, and linoleic acid. The proposed technique is effective for concurrent treatment of MSW leachate and power generation besides algal lipid production without external aeration.
doi_str_mv 10.1007/s12010-019-03160-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2411051172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411051172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-a1f3133b5a49e0103839c3d6a7f814a43fe66656e1095031b937fd795a2952713</originalsourceid><addsrcrecordid>eNp9kE1PwyAYx4nRuPnyBTwYEs9VHiilHJdlU5NNTXTxSGhLJwtrJ7SHxS8vuqk3TwT-L8_DD6ELINdAiLgJQAmQhIBMCIOMJPwADYHzeKUSDtGQUMESSnM5QCchrAgBmnNxjAYMJBEiJ0P0Mda-aBv8YPrOa4cnzpSdt6XttvjJt1VfdjbKtW_XeN43UdhE13PrbIVfdegMnummqq1zeGZ0-abjyyLYZolHbqldMgrBRleF57b0bWFjeNobh8fGuTN0VGsXzPn-PEWL6eRlfJfMHm_vx6NZUqZAu0RDzYCxgutUmvhhljNZsirTos4h1SmrTZZlPDNAJI8gCslEXQnJNZWcCmCn6GrXu_Hte29Cp1Zt75s4UtEUgHAAQaOL7lxxzxC8qdXG27X2WwVEffFWO94q8lbfvBWPoct9dV-sTfUb-QEcDWxnCFFqlsb_zf6n9hOenoos</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411051172</pqid></control><display><type>article</type><title>Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell</title><source>Springer Nature</source><creator>Lakshmidevi, Rajendran ; Gandhi, Nagarajan Nagendra ; Muthukumar, Karuppan</creator><creatorcontrib>Lakshmidevi, Rajendran ; Gandhi, Nagarajan Nagendra ; Muthukumar, Karuppan</creatorcontrib><description>We demonstrate the feasibility of algal lipid production and bioelectricity generation with concurrent treatment of municipal solid waste (MSW) leachate in a double-chamber algal-assisted microbial fuel cell (AAMFC). The cathode chamber was loaded with Synechococcus sp. and MSW leachate whereas anode chamber was loaded with anaerobic microflora. While treating 50% MSW leachate, highest power density (95.63 mW/m 2 ), current density (2.48 A/m 2 ), and biomass concentration (2.54 g/l) were observed. The algal growth in the cathode chamber increased the oxygen concentration from 5.5 to 8.6 mg/l. Secondly, we studied the influence of salinity in AAMFC performance. The addition of 30 mM NaCl with 50% leachate increased the power and current density to 110.92 mW/m 2 and 5.169 A/m 2 , respectively. It also increased the biomass concentration, protein, and lipid content. The analysis of fatty acid profile of algae confirmed the presence of palmitic acid, stearic acid, and linoleic acid. The proposed technique is effective for concurrent treatment of MSW leachate and power generation besides algal lipid production without external aeration.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-019-03160-5</identifier><identifier>PMID: 31907780</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aeration ; Algae ; Algal growth ; Anaerobic treatment ; Bacteria ; Bacterial leaching ; Biochemical fuel cells ; Biochemistry ; Bioelectric Energy Sources - microbiology ; Bioelectricity ; Biomass ; Biotechnology ; Carbon - chemistry ; Carbon neutrality ; Cathodes ; Chemistry ; Chemistry and Materials Science ; Current density ; Electric power generation ; Electricity ; Electrodes ; Fatty acids ; Fuel cells ; Fuel technology ; India ; Kinetics ; Landfills ; Leachates ; Linoleic acid ; Lipids ; Microflora ; Municipal landfills ; Municipal solid waste ; Municipal waste management ; Oxygen ; Palmitic acid ; Sodium chloride ; Solid Waste ; Solid waste management ; Stearic acid ; Synechococcus ; Waste Disposal Facilities ; Waste disposal sites ; Water Pollutants, Chemical</subject><ispartof>Applied biochemistry and biotechnology, 2020-06, Vol.191 (2), p.852-866</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-a1f3133b5a49e0103839c3d6a7f814a43fe66656e1095031b937fd795a2952713</citedby><cites>FETCH-LOGICAL-c412t-a1f3133b5a49e0103839c3d6a7f814a43fe66656e1095031b937fd795a2952713</cites><orcidid>0000-0002-2683-6039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31907780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakshmidevi, Rajendran</creatorcontrib><creatorcontrib>Gandhi, Nagarajan Nagendra</creatorcontrib><creatorcontrib>Muthukumar, Karuppan</creatorcontrib><title>Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>We demonstrate the feasibility of algal lipid production and bioelectricity generation with concurrent treatment of municipal solid waste (MSW) leachate in a double-chamber algal-assisted microbial fuel cell (AAMFC). The cathode chamber was loaded with Synechococcus sp. and MSW leachate whereas anode chamber was loaded with anaerobic microflora. While treating 50% MSW leachate, highest power density (95.63 mW/m 2 ), current density (2.48 A/m 2 ), and biomass concentration (2.54 g/l) were observed. The algal growth in the cathode chamber increased the oxygen concentration from 5.5 to 8.6 mg/l. Secondly, we studied the influence of salinity in AAMFC performance. The addition of 30 mM NaCl with 50% leachate increased the power and current density to 110.92 mW/m 2 and 5.169 A/m 2 , respectively. It also increased the biomass concentration, protein, and lipid content. The analysis of fatty acid profile of algae confirmed the presence of palmitic acid, stearic acid, and linoleic acid. The proposed technique is effective for concurrent treatment of MSW leachate and power generation besides algal lipid production without external aeration.</description><subject>Aeration</subject><subject>Algae</subject><subject>Algal growth</subject><subject>Anaerobic treatment</subject><subject>Bacteria</subject><subject>Bacterial leaching</subject><subject>Biochemical fuel cells</subject><subject>Biochemistry</subject><subject>Bioelectric Energy Sources - microbiology</subject><subject>Bioelectricity</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Carbon - chemistry</subject><subject>Carbon neutrality</subject><subject>Cathodes</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Current density</subject><subject>Electric power generation</subject><subject>Electricity</subject><subject>Electrodes</subject><subject>Fatty acids</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>India</subject><subject>Kinetics</subject><subject>Landfills</subject><subject>Leachates</subject><subject>Linoleic acid</subject><subject>Lipids</subject><subject>Microflora</subject><subject>Municipal landfills</subject><subject>Municipal solid waste</subject><subject>Municipal waste management</subject><subject>Oxygen</subject><subject>Palmitic acid</subject><subject>Sodium chloride</subject><subject>Solid Waste</subject><subject>Solid waste management</subject><subject>Stearic acid</subject><subject>Synechococcus</subject><subject>Waste Disposal Facilities</subject><subject>Waste disposal sites</subject><subject>Water Pollutants, Chemical</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwyAYx4nRuPnyBTwYEs9VHiilHJdlU5NNTXTxSGhLJwtrJ7SHxS8vuqk3TwT-L8_DD6ELINdAiLgJQAmQhIBMCIOMJPwADYHzeKUSDtGQUMESSnM5QCchrAgBmnNxjAYMJBEiJ0P0Mda-aBv8YPrOa4cnzpSdt6XttvjJt1VfdjbKtW_XeN43UdhE13PrbIVfdegMnummqq1zeGZ0-abjyyLYZolHbqldMgrBRleF57b0bWFjeNobh8fGuTN0VGsXzPn-PEWL6eRlfJfMHm_vx6NZUqZAu0RDzYCxgutUmvhhljNZsirTos4h1SmrTZZlPDNAJI8gCslEXQnJNZWcCmCn6GrXu_Hte29Cp1Zt75s4UtEUgHAAQaOL7lxxzxC8qdXG27X2WwVEffFWO94q8lbfvBWPoct9dV-sTfUb-QEcDWxnCFFqlsb_zf6n9hOenoos</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Lakshmidevi, Rajendran</creator><creator>Gandhi, Nagarajan Nagendra</creator><creator>Muthukumar, Karuppan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2683-6039</orcidid></search><sort><creationdate>20200601</creationdate><title>Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell</title><author>Lakshmidevi, Rajendran ; Gandhi, Nagarajan Nagendra ; Muthukumar, Karuppan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-a1f3133b5a49e0103839c3d6a7f814a43fe66656e1095031b937fd795a2952713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aeration</topic><topic>Algae</topic><topic>Algal growth</topic><topic>Anaerobic treatment</topic><topic>Bacteria</topic><topic>Bacterial leaching</topic><topic>Biochemical fuel cells</topic><topic>Biochemistry</topic><topic>Bioelectric Energy Sources - microbiology</topic><topic>Bioelectricity</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Carbon - chemistry</topic><topic>Carbon neutrality</topic><topic>Cathodes</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Current density</topic><topic>Electric power generation</topic><topic>Electricity</topic><topic>Electrodes</topic><topic>Fatty acids</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>India</topic><topic>Kinetics</topic><topic>Landfills</topic><topic>Leachates</topic><topic>Linoleic acid</topic><topic>Lipids</topic><topic>Microflora</topic><topic>Municipal landfills</topic><topic>Municipal solid waste</topic><topic>Municipal waste management</topic><topic>Oxygen</topic><topic>Palmitic acid</topic><topic>Sodium chloride</topic><topic>Solid Waste</topic><topic>Solid waste management</topic><topic>Stearic acid</topic><topic>Synechococcus</topic><topic>Waste Disposal Facilities</topic><topic>Waste disposal sites</topic><topic>Water Pollutants, Chemical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakshmidevi, Rajendran</creatorcontrib><creatorcontrib>Gandhi, Nagarajan Nagendra</creatorcontrib><creatorcontrib>Muthukumar, Karuppan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakshmidevi, Rajendran</au><au>Gandhi, Nagarajan Nagendra</au><au>Muthukumar, Karuppan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>191</volume><issue>2</issue><spage>852</spage><epage>866</epage><pages>852-866</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><abstract>We demonstrate the feasibility of algal lipid production and bioelectricity generation with concurrent treatment of municipal solid waste (MSW) leachate in a double-chamber algal-assisted microbial fuel cell (AAMFC). The cathode chamber was loaded with Synechococcus sp. and MSW leachate whereas anode chamber was loaded with anaerobic microflora. While treating 50% MSW leachate, highest power density (95.63 mW/m 2 ), current density (2.48 A/m 2 ), and biomass concentration (2.54 g/l) were observed. The algal growth in the cathode chamber increased the oxygen concentration from 5.5 to 8.6 mg/l. Secondly, we studied the influence of salinity in AAMFC performance. The addition of 30 mM NaCl with 50% leachate increased the power and current density to 110.92 mW/m 2 and 5.169 A/m 2 , respectively. It also increased the biomass concentration, protein, and lipid content. The analysis of fatty acid profile of algae confirmed the presence of palmitic acid, stearic acid, and linoleic acid. The proposed technique is effective for concurrent treatment of MSW leachate and power generation besides algal lipid production without external aeration.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31907780</pmid><doi>10.1007/s12010-019-03160-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2683-6039</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0273-2289
ispartof Applied biochemistry and biotechnology, 2020-06, Vol.191 (2), p.852-866
issn 0273-2289
1559-0291
language eng
recordid cdi_proquest_journals_2411051172
source Springer Nature
subjects Aeration
Algae
Algal growth
Anaerobic treatment
Bacteria
Bacterial leaching
Biochemical fuel cells
Biochemistry
Bioelectric Energy Sources - microbiology
Bioelectricity
Biomass
Biotechnology
Carbon - chemistry
Carbon neutrality
Cathodes
Chemistry
Chemistry and Materials Science
Current density
Electric power generation
Electricity
Electrodes
Fatty acids
Fuel cells
Fuel technology
India
Kinetics
Landfills
Leachates
Linoleic acid
Lipids
Microflora
Municipal landfills
Municipal solid waste
Municipal waste management
Oxygen
Palmitic acid
Sodium chloride
Solid Waste
Solid waste management
Stearic acid
Synechococcus
Waste Disposal Facilities
Waste disposal sites
Water Pollutants, Chemical
title Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Neutral%20Electricity%20Production%20from%20Municipal%20Solid%20Waste%20Landfill%20Leachate%20Using%20Algal-Assisted%20Microbial%20Fuel%20Cell&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Lakshmidevi,%20Rajendran&rft.date=2020-06-01&rft.volume=191&rft.issue=2&rft.spage=852&rft.epage=866&rft.pages=852-866&rft.issn=0273-2289&rft.eissn=1559-0291&rft_id=info:doi/10.1007/s12010-019-03160-5&rft_dat=%3Cproquest_cross%3E2411051172%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-a1f3133b5a49e0103839c3d6a7f814a43fe66656e1095031b937fd795a2952713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2411051172&rft_id=info:pmid/31907780&rfr_iscdi=true