Loading…

Laccase-catalyzed polymerization of hydroquinone incorporated with chitosan oligosaccharide for enzymatic coloration of cotton

Chitosan oligosaccharide (COS), a water-soluble carbohydrate obtained from chemical or enzymatic hydrolysis of chitosan, has similar structure and properties to non-toxic, biocompatible, and biodegradable chitosan. However, COS has many advantages over chitosan due to its low molecular weight and hi...

Full description

Saved in:
Bibliographic Details
Published in:Applied biochemistry and biotechnology 2020-06, Vol.191 (2), p.605-622
Main Authors: Bai, Rubing, Yu, Yuanyuan, Wang, Qiang, Shen, Jinsong, Yuan, Jiugang, Fan, Xuerong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chitosan oligosaccharide (COS), a water-soluble carbohydrate obtained from chemical or enzymatic hydrolysis of chitosan, has similar structure and properties to non-toxic, biocompatible, and biodegradable chitosan. However, COS has many advantages over chitosan due to its low molecular weight and high water solubility. In the current work, COS was incorporated in the laccase-catalyzed polymerization of hydroquinone. The laccase-catalyzed polymerization of hydroquinone with or without COS was investigated by using simple structure of glucosamine hydrochloride as an alternative to COS to understand the mechanism of COS-incorporated polymerization of hydroquinone. Although polyhydroquinone can be regarded as the polymeric colorant with dark brown color, there is no affinity or chemical bonding between polyhydroquinone and cotton fibers. Cotton fabrics were successfully in-situ dyed into brown color through the laccase-catalyzed polymerization of hydroquinone by incorporating with COS as a template. The presence of COS enhanced the dye uptake of polyhydroquinone on cotton fibers due to high affinity of COS to cotton and covalent bonding between COS and polyhydroquinone during laccase catalysis. This novel approach not only provides a simple route for the biological coloration of cotton fabrics but also presents a significant way to prepare functional textiles with antibacterial property.
ISSN:0273-2289
1559-0291
DOI:10.1007/s12010-019-03169-w