Loading…
Hamming distance of repeated-root constacyclic codes of length 2ps over Fpm+uFpm
Let p be an odd prime, and δ be an arbitrary unit of the finite chain ring F p m + u F p m ( u 2 = 0 ) . The Hamming distances of all δ -constacyclic codes of length 2 p s over F p m + u F p m are completely determined. We provide some examples from which some codes have better parameters than the e...
Saved in:
Published in: | Applicable algebra in engineering, communication and computing communication and computing, 2020, Vol.31 (3-4), p.291-305 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-p720-dc1579cf3104473f145bed7e33e1a87f195ff0788cfa5b538abc5939f8bef5ed3 |
container_end_page | 305 |
container_issue | 3-4 |
container_start_page | 291 |
container_title | Applicable algebra in engineering, communication and computing |
container_volume | 31 |
creator | Dinh, Hai Q. Gaur, A. Gupta, Indivar Singh, Abhay K. Singh, Manoj Kumar Tansuchat, Roengchai |
description | Let
p
be an odd prime, and
δ
be an arbitrary unit of the finite chain ring
F
p
m
+
u
F
p
m
(
u
2
=
0
)
. The Hamming distances of all
δ
-constacyclic codes of length
2
p
s
over
F
p
m
+
u
F
p
m
are completely determined. We provide some examples from which some codes have better parameters than the existing ones. As applications, we determine all MDS repeated-root
δ
-constacyclic codes of length
2
p
s
over
F
p
m
+
u
F
p
m
. |
doi_str_mv | 10.1007/s00200-020-00432-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2411122185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411122185</sourcerecordid><originalsourceid>FETCH-LOGICAL-p720-dc1579cf3104473f145bed7e33e1a87f195ff0788cfa5b538abc5939f8bef5ed3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKt_wNOCR4nOJJsmOUqxrVDQQ-9hNzupLe3ummwF_71pK3h5Z4Z5mI-XsXuEJwTQzwlAAPAsHKCUgsMFG-EpmQhxyUZgpeEotL1mNyltAWBiSz1iH4tqv9-066LZpKFqPRVdKCL1VA3U8Nh1Q-G7Nrf8j99tfC4aSkdmR-16-CxEn6tvisWs3z8estyyq1DtEt39xTFbzV5X0wVfvs_fpi9L3ut8ZONRaeuDRChLLQOWqqZGk5SEldEBrQoBtDE-VKpW0lS1V1baYGoKiho5Zg_nsX3svg6UBrftDrHNG50oEVEINCpT8kylPuYnKf5TCO7onDs757K4k3MO5C9peGDm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411122185</pqid></control><display><type>article</type><title>Hamming distance of repeated-root constacyclic codes of length 2ps over Fpm+uFpm</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Dinh, Hai Q. ; Gaur, A. ; Gupta, Indivar ; Singh, Abhay K. ; Singh, Manoj Kumar ; Tansuchat, Roengchai</creator><creatorcontrib>Dinh, Hai Q. ; Gaur, A. ; Gupta, Indivar ; Singh, Abhay K. ; Singh, Manoj Kumar ; Tansuchat, Roengchai</creatorcontrib><description>Let
p
be an odd prime, and
δ
be an arbitrary unit of the finite chain ring
F
p
m
+
u
F
p
m
(
u
2
=
0
)
. The Hamming distances of all
δ
-constacyclic codes of length
2
p
s
over
F
p
m
+
u
F
p
m
are completely determined. We provide some examples from which some codes have better parameters than the existing ones. As applications, we determine all MDS repeated-root
δ
-constacyclic codes of length
2
p
s
over
F
p
m
+
u
F
p
m
.</description><identifier>ISSN: 0938-1279</identifier><identifier>EISSN: 1432-0622</identifier><identifier>DOI: 10.1007/s00200-020-00432-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computer Hardware ; Computer Science ; Original Paper ; Symbolic and Algebraic Manipulation ; Theory of Computation</subject><ispartof>Applicable algebra in engineering, communication and computing, 2020, Vol.31 (3-4), p.291-305</ispartof><rights>Springer-Verlag GmbH, DE 2020</rights><rights>Springer-Verlag GmbH, DE 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p720-dc1579cf3104473f145bed7e33e1a87f195ff0788cfa5b538abc5939f8bef5ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dinh, Hai Q.</creatorcontrib><creatorcontrib>Gaur, A.</creatorcontrib><creatorcontrib>Gupta, Indivar</creatorcontrib><creatorcontrib>Singh, Abhay K.</creatorcontrib><creatorcontrib>Singh, Manoj Kumar</creatorcontrib><creatorcontrib>Tansuchat, Roengchai</creatorcontrib><title>Hamming distance of repeated-root constacyclic codes of length 2ps over Fpm+uFpm</title><title>Applicable algebra in engineering, communication and computing</title><addtitle>AAECC</addtitle><description>Let
p
be an odd prime, and
δ
be an arbitrary unit of the finite chain ring
F
p
m
+
u
F
p
m
(
u
2
=
0
)
. The Hamming distances of all
δ
-constacyclic codes of length
2
p
s
over
F
p
m
+
u
F
p
m
are completely determined. We provide some examples from which some codes have better parameters than the existing ones. As applications, we determine all MDS repeated-root
δ
-constacyclic codes of length
2
p
s
over
F
p
m
+
u
F
p
m
.</description><subject>Artificial Intelligence</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Original Paper</subject><subject>Symbolic and Algebraic Manipulation</subject><subject>Theory of Computation</subject><issn>0938-1279</issn><issn>1432-0622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1LAzEQhoMoWKt_wNOCR4nOJJsmOUqxrVDQQ-9hNzupLe3ummwF_71pK3h5Z4Z5mI-XsXuEJwTQzwlAAPAsHKCUgsMFG-EpmQhxyUZgpeEotL1mNyltAWBiSz1iH4tqv9-066LZpKFqPRVdKCL1VA3U8Nh1Q-G7Nrf8j99tfC4aSkdmR-16-CxEn6tvisWs3z8estyyq1DtEt39xTFbzV5X0wVfvs_fpi9L3ut8ZONRaeuDRChLLQOWqqZGk5SEldEBrQoBtDE-VKpW0lS1V1baYGoKiho5Zg_nsX3svg6UBrftDrHNG50oEVEINCpT8kylPuYnKf5TCO7onDs757K4k3MO5C9peGDm</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Dinh, Hai Q.</creator><creator>Gaur, A.</creator><creator>Gupta, Indivar</creator><creator>Singh, Abhay K.</creator><creator>Singh, Manoj Kumar</creator><creator>Tansuchat, Roengchai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2020</creationdate><title>Hamming distance of repeated-root constacyclic codes of length 2ps over Fpm+uFpm</title><author>Dinh, Hai Q. ; Gaur, A. ; Gupta, Indivar ; Singh, Abhay K. ; Singh, Manoj Kumar ; Tansuchat, Roengchai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p720-dc1579cf3104473f145bed7e33e1a87f195ff0788cfa5b538abc5939f8bef5ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Original Paper</topic><topic>Symbolic and Algebraic Manipulation</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinh, Hai Q.</creatorcontrib><creatorcontrib>Gaur, A.</creatorcontrib><creatorcontrib>Gupta, Indivar</creatorcontrib><creatorcontrib>Singh, Abhay K.</creatorcontrib><creatorcontrib>Singh, Manoj Kumar</creatorcontrib><creatorcontrib>Tansuchat, Roengchai</creatorcontrib><jtitle>Applicable algebra in engineering, communication and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinh, Hai Q.</au><au>Gaur, A.</au><au>Gupta, Indivar</au><au>Singh, Abhay K.</au><au>Singh, Manoj Kumar</au><au>Tansuchat, Roengchai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hamming distance of repeated-root constacyclic codes of length 2ps over Fpm+uFpm</atitle><jtitle>Applicable algebra in engineering, communication and computing</jtitle><stitle>AAECC</stitle><date>2020</date><risdate>2020</risdate><volume>31</volume><issue>3-4</issue><spage>291</spage><epage>305</epage><pages>291-305</pages><issn>0938-1279</issn><eissn>1432-0622</eissn><abstract>Let
p
be an odd prime, and
δ
be an arbitrary unit of the finite chain ring
F
p
m
+
u
F
p
m
(
u
2
=
0
)
. The Hamming distances of all
δ
-constacyclic codes of length
2
p
s
over
F
p
m
+
u
F
p
m
are completely determined. We provide some examples from which some codes have better parameters than the existing ones. As applications, we determine all MDS repeated-root
δ
-constacyclic codes of length
2
p
s
over
F
p
m
+
u
F
p
m
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00200-020-00432-0</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-1279 |
ispartof | Applicable algebra in engineering, communication and computing, 2020, Vol.31 (3-4), p.291-305 |
issn | 0938-1279 1432-0622 |
language | eng |
recordid | cdi_proquest_journals_2411122185 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Artificial Intelligence Computer Hardware Computer Science Original Paper Symbolic and Algebraic Manipulation Theory of Computation |
title | Hamming distance of repeated-root constacyclic codes of length 2ps over Fpm+uFpm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hamming%20distance%20of%20repeated-root%20constacyclic%20codes%20of%20length%202ps%20over%20Fpm+uFpm&rft.jtitle=Applicable%20algebra%20in%20engineering,%20communication%20and%20computing&rft.au=Dinh,%20Hai%20Q.&rft.date=2020&rft.volume=31&rft.issue=3-4&rft.spage=291&rft.epage=305&rft.pages=291-305&rft.issn=0938-1279&rft.eissn=1432-0622&rft_id=info:doi/10.1007/s00200-020-00432-0&rft_dat=%3Cproquest_sprin%3E2411122185%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p720-dc1579cf3104473f145bed7e33e1a87f195ff0788cfa5b538abc5939f8bef5ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2411122185&rft_id=info:pmid/&rfr_iscdi=true |