Loading…

The role of gallium and indium in improving the electrochemical characteristics of Al–Mg–Sn-based alloy for Al–air battery anodes in 2 M NaCl solution

The electrochemical discharge behaviours of Al–0.5Mg–0.1Sn (wt%), Al–0.5Mg–0.1Sn–0.05In (wt%), Al–0.5Mg–0.1Sn–0.05Ga (wt%) and Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) alloys are investigated in 2 M NaCl solution. Based on electrochemical responses and microstructure observations, the influence mechanism...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2020-09, Vol.55 (25), p.11545-11560
Main Authors: Wu, Zibin, Zhang, Haitao, Qin, Kunlun, Zou, Jing, Qin, Ke, Ban, Chunyan, Cui, Jianzhong, Nagaumi, Hiromi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c431t-7fa43098cc66e350df2ba046bb9a41ddad7fb9e34528c5729d37c5e811ec678d3
cites cdi_FETCH-LOGICAL-c431t-7fa43098cc66e350df2ba046bb9a41ddad7fb9e34528c5729d37c5e811ec678d3
container_end_page 11560
container_issue 25
container_start_page 11545
container_title Journal of materials science
container_volume 55
creator Wu, Zibin
Zhang, Haitao
Qin, Kunlun
Zou, Jing
Qin, Ke
Ban, Chunyan
Cui, Jianzhong
Nagaumi, Hiromi
description The electrochemical discharge behaviours of Al–0.5Mg–0.1Sn (wt%), Al–0.5Mg–0.1Sn–0.05In (wt%), Al–0.5Mg–0.1Sn–0.05Ga (wt%) and Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) alloys are investigated in 2 M NaCl solution. Based on electrochemical responses and microstructure observations, the influence mechanism of indium and gallium on the discharge behaviour of Al–Mg–Sn-based anode is clarified. The result indicates that Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anode has the best discharge characteristics. Adding gallium accelerates active dissolution of Al–Mg–Sn anode. And adding indium leads to the appearance of discharge products (ie, In and In(OH) 3 ), which inhibits the self-corrosion reaction of the anode. The peak power and peak energy density of Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anodes reach approximately 92.96 mW cm −2 (at 140 mA cm −2 ) and 3385.4 W h kg −1 (at 20 mA cm −2 ) in 2 M NaCl solution, which increases by 447% and 104% compared with that of Al–0.5Mg–0.1Sn (wt%) anodes, respectively. Therefore, Al–Mg–Sn–Ga–In anodes could be a good and promising choice for high-speed discharge Al–air batteries in brine electrolytes.
doi_str_mv 10.1007/s10853-020-04755-8
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2411432236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A626344556</galeid><sourcerecordid>A626344556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-7fa43098cc66e350df2ba046bb9a41ddad7fb9e34528c5729d37c5e811ec678d3</originalsourceid><addsrcrecordid>eNp9kc1q3DAQx01poNs0L9CToKcenOrT9h6XpR-BpIUmOQtZGnsVtFIqyaF76zvkHOiz9FH6JJXrQsklCKRB-v1nNPOvqtcEnxKM23eJ4E6wGlNcY94KUXfPqhURLat5h9nzaoUxpTXlDXlRvUzpBmMsWkpW1cPVDlAMDlAY0Kics9MeKW-Q9WYOrUd2fxvDnfUjyoUFBzrHoHewt1o5pHcqKp0h2pStTnOajfv94_5iLNulr3uVwKCSOBzQEOLyqGxEvcpFdSjFgoE0F6K_fl6gz2rrUApuyjb4V9XRoFyCk3_ncXX94f3V9lN9_uXj2XZzXmvOSK7bQXGG153WTQNMYDPQXmHe9P1acWKMMu3Qr4FxQTtd-l4b1moBHSGgm7Yz7Lh6s-QtnX6bIGV5E6boS0lJOSGcUcqaQp0uVJkTSOuHkEvrZZl5FsHDYMv9pqEN41yIWfD2kaAwGb7nUU0pybPLr49ZurA6hpQiDPI22r2KB0mwnD2Wi8eyeCz_eiy7ImKLKBXYjxD___sJ1R-6_K2z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411432236</pqid></control><display><type>article</type><title>The role of gallium and indium in improving the electrochemical characteristics of Al–Mg–Sn-based alloy for Al–air battery anodes in 2 M NaCl solution</title><source>Springer Nature</source><creator>Wu, Zibin ; Zhang, Haitao ; Qin, Kunlun ; Zou, Jing ; Qin, Ke ; Ban, Chunyan ; Cui, Jianzhong ; Nagaumi, Hiromi</creator><creatorcontrib>Wu, Zibin ; Zhang, Haitao ; Qin, Kunlun ; Zou, Jing ; Qin, Ke ; Ban, Chunyan ; Cui, Jianzhong ; Nagaumi, Hiromi</creatorcontrib><description>The electrochemical discharge behaviours of Al–0.5Mg–0.1Sn (wt%), Al–0.5Mg–0.1Sn–0.05In (wt%), Al–0.5Mg–0.1Sn–0.05Ga (wt%) and Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) alloys are investigated in 2 M NaCl solution. Based on electrochemical responses and microstructure observations, the influence mechanism of indium and gallium on the discharge behaviour of Al–Mg–Sn-based anode is clarified. The result indicates that Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anode has the best discharge characteristics. Adding gallium accelerates active dissolution of Al–Mg–Sn anode. And adding indium leads to the appearance of discharge products (ie, In and In(OH) 3 ), which inhibits the self-corrosion reaction of the anode. The peak power and peak energy density of Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anodes reach approximately 92.96 mW cm −2 (at 140 mA cm −2 ) and 3385.4 W h kg −1 (at 20 mA cm −2 ) in 2 M NaCl solution, which increases by 447% and 104% compared with that of Al–0.5Mg–0.1Sn (wt%) anodes, respectively. Therefore, Al–Mg–Sn–Ga–In anodes could be a good and promising choice for high-speed discharge Al–air batteries in brine electrolytes.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-04755-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Anodes ; Anodic dissolution ; Batteries ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Corrosion and anti-corrosives ; Crystallography and Scattering Methods ; Discharge ; Dissolution ; Electrolytes ; Energy Materials ; Flux density ; Gallium ; Indium ; Magnesium ; Materials Science ; Metal air batteries ; Polymer Sciences ; Saline water ; Sodium chloride ; Solid Mechanics ; Specialty metals industry ; Tin base alloys</subject><ispartof>Journal of materials science, 2020-09, Vol.55 (25), p.11545-11560</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-7fa43098cc66e350df2ba046bb9a41ddad7fb9e34528c5729d37c5e811ec678d3</citedby><cites>FETCH-LOGICAL-c431t-7fa43098cc66e350df2ba046bb9a41ddad7fb9e34528c5729d37c5e811ec678d3</cites><orcidid>0000-0002-6664-324X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Zibin</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Qin, Kunlun</creatorcontrib><creatorcontrib>Zou, Jing</creatorcontrib><creatorcontrib>Qin, Ke</creatorcontrib><creatorcontrib>Ban, Chunyan</creatorcontrib><creatorcontrib>Cui, Jianzhong</creatorcontrib><creatorcontrib>Nagaumi, Hiromi</creatorcontrib><title>The role of gallium and indium in improving the electrochemical characteristics of Al–Mg–Sn-based alloy for Al–air battery anodes in 2 M NaCl solution</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The electrochemical discharge behaviours of Al–0.5Mg–0.1Sn (wt%), Al–0.5Mg–0.1Sn–0.05In (wt%), Al–0.5Mg–0.1Sn–0.05Ga (wt%) and Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) alloys are investigated in 2 M NaCl solution. Based on electrochemical responses and microstructure observations, the influence mechanism of indium and gallium on the discharge behaviour of Al–Mg–Sn-based anode is clarified. The result indicates that Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anode has the best discharge characteristics. Adding gallium accelerates active dissolution of Al–Mg–Sn anode. And adding indium leads to the appearance of discharge products (ie, In and In(OH) 3 ), which inhibits the self-corrosion reaction of the anode. The peak power and peak energy density of Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anodes reach approximately 92.96 mW cm −2 (at 140 mA cm −2 ) and 3385.4 W h kg −1 (at 20 mA cm −2 ) in 2 M NaCl solution, which increases by 447% and 104% compared with that of Al–0.5Mg–0.1Sn (wt%) anodes, respectively. Therefore, Al–Mg–Sn–Ga–In anodes could be a good and promising choice for high-speed discharge Al–air batteries in brine electrolytes.</description><subject>Alloys</subject><subject>Anodes</subject><subject>Anodic dissolution</subject><subject>Batteries</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Corrosion and anti-corrosives</subject><subject>Crystallography and Scattering Methods</subject><subject>Discharge</subject><subject>Dissolution</subject><subject>Electrolytes</subject><subject>Energy Materials</subject><subject>Flux density</subject><subject>Gallium</subject><subject>Indium</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Metal air batteries</subject><subject>Polymer Sciences</subject><subject>Saline water</subject><subject>Sodium chloride</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Tin base alloys</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1q3DAQx01poNs0L9CToKcenOrT9h6XpR-BpIUmOQtZGnsVtFIqyaF76zvkHOiz9FH6JJXrQsklCKRB-v1nNPOvqtcEnxKM23eJ4E6wGlNcY94KUXfPqhURLat5h9nzaoUxpTXlDXlRvUzpBmMsWkpW1cPVDlAMDlAY0Kics9MeKW-Q9WYOrUd2fxvDnfUjyoUFBzrHoHewt1o5pHcqKp0h2pStTnOajfv94_5iLNulr3uVwKCSOBzQEOLyqGxEvcpFdSjFgoE0F6K_fl6gz2rrUApuyjb4V9XRoFyCk3_ncXX94f3V9lN9_uXj2XZzXmvOSK7bQXGG153WTQNMYDPQXmHe9P1acWKMMu3Qr4FxQTtd-l4b1moBHSGgm7Yz7Lh6s-QtnX6bIGV5E6boS0lJOSGcUcqaQp0uVJkTSOuHkEvrZZl5FsHDYMv9pqEN41yIWfD2kaAwGb7nUU0pybPLr49ZurA6hpQiDPI22r2KB0mwnD2Wi8eyeCz_eiy7ImKLKBXYjxD___sJ1R-6_K2z</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wu, Zibin</creator><creator>Zhang, Haitao</creator><creator>Qin, Kunlun</creator><creator>Zou, Jing</creator><creator>Qin, Ke</creator><creator>Ban, Chunyan</creator><creator>Cui, Jianzhong</creator><creator>Nagaumi, Hiromi</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6664-324X</orcidid></search><sort><creationdate>20200901</creationdate><title>The role of gallium and indium in improving the electrochemical characteristics of Al–Mg–Sn-based alloy for Al–air battery anodes in 2 M NaCl solution</title><author>Wu, Zibin ; Zhang, Haitao ; Qin, Kunlun ; Zou, Jing ; Qin, Ke ; Ban, Chunyan ; Cui, Jianzhong ; Nagaumi, Hiromi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-7fa43098cc66e350df2ba046bb9a41ddad7fb9e34528c5729d37c5e811ec678d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloys</topic><topic>Anodes</topic><topic>Anodic dissolution</topic><topic>Batteries</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Corrosion and anti-corrosives</topic><topic>Crystallography and Scattering Methods</topic><topic>Discharge</topic><topic>Dissolution</topic><topic>Electrolytes</topic><topic>Energy Materials</topic><topic>Flux density</topic><topic>Gallium</topic><topic>Indium</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Metal air batteries</topic><topic>Polymer Sciences</topic><topic>Saline water</topic><topic>Sodium chloride</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Tin base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zibin</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Qin, Kunlun</creatorcontrib><creatorcontrib>Zou, Jing</creatorcontrib><creatorcontrib>Qin, Ke</creatorcontrib><creatorcontrib>Ban, Chunyan</creatorcontrib><creatorcontrib>Cui, Jianzhong</creatorcontrib><creatorcontrib>Nagaumi, Hiromi</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zibin</au><au>Zhang, Haitao</au><au>Qin, Kunlun</au><au>Zou, Jing</au><au>Qin, Ke</au><au>Ban, Chunyan</au><au>Cui, Jianzhong</au><au>Nagaumi, Hiromi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of gallium and indium in improving the electrochemical characteristics of Al–Mg–Sn-based alloy for Al–air battery anodes in 2 M NaCl solution</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>55</volume><issue>25</issue><spage>11545</spage><epage>11560</epage><pages>11545-11560</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The electrochemical discharge behaviours of Al–0.5Mg–0.1Sn (wt%), Al–0.5Mg–0.1Sn–0.05In (wt%), Al–0.5Mg–0.1Sn–0.05Ga (wt%) and Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) alloys are investigated in 2 M NaCl solution. Based on electrochemical responses and microstructure observations, the influence mechanism of indium and gallium on the discharge behaviour of Al–Mg–Sn-based anode is clarified. The result indicates that Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anode has the best discharge characteristics. Adding gallium accelerates active dissolution of Al–Mg–Sn anode. And adding indium leads to the appearance of discharge products (ie, In and In(OH) 3 ), which inhibits the self-corrosion reaction of the anode. The peak power and peak energy density of Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anodes reach approximately 92.96 mW cm −2 (at 140 mA cm −2 ) and 3385.4 W h kg −1 (at 20 mA cm −2 ) in 2 M NaCl solution, which increases by 447% and 104% compared with that of Al–0.5Mg–0.1Sn (wt%) anodes, respectively. Therefore, Al–Mg–Sn–Ga–In anodes could be a good and promising choice for high-speed discharge Al–air batteries in brine electrolytes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-04755-8</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6664-324X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2020-09, Vol.55 (25), p.11545-11560
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2411432236
source Springer Nature
subjects Alloys
Anodes
Anodic dissolution
Batteries
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Corrosion and anti-corrosives
Crystallography and Scattering Methods
Discharge
Dissolution
Electrolytes
Energy Materials
Flux density
Gallium
Indium
Magnesium
Materials Science
Metal air batteries
Polymer Sciences
Saline water
Sodium chloride
Solid Mechanics
Specialty metals industry
Tin base alloys
title The role of gallium and indium in improving the electrochemical characteristics of Al–Mg–Sn-based alloy for Al–air battery anodes in 2 M NaCl solution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20gallium%20and%20indium%20in%20improving%20the%20electrochemical%20characteristics%20of%20Al%E2%80%93Mg%E2%80%93Sn-based%20alloy%20for%20Al%E2%80%93air%20battery%20anodes%20in%202%C2%A0M%20NaCl%20solution&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wu,%20Zibin&rft.date=2020-09-01&rft.volume=55&rft.issue=25&rft.spage=11545&rft.epage=11560&rft.pages=11545-11560&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-04755-8&rft_dat=%3Cgale_proqu%3EA626344556%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-7fa43098cc66e350df2ba046bb9a41ddad7fb9e34528c5729d37c5e811ec678d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2411432236&rft_id=info:pmid/&rft_galeid=A626344556&rfr_iscdi=true