Loading…
The role of gallium and indium in improving the electrochemical characteristics of Al–Mg–Sn-based alloy for Al–air battery anodes in 2 M NaCl solution
The electrochemical discharge behaviours of Al–0.5Mg–0.1Sn (wt%), Al–0.5Mg–0.1Sn–0.05In (wt%), Al–0.5Mg–0.1Sn–0.05Ga (wt%) and Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) alloys are investigated in 2 M NaCl solution. Based on electrochemical responses and microstructure observations, the influence mechanism...
Saved in:
Published in: | Journal of materials science 2020-09, Vol.55 (25), p.11545-11560 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c431t-7fa43098cc66e350df2ba046bb9a41ddad7fb9e34528c5729d37c5e811ec678d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c431t-7fa43098cc66e350df2ba046bb9a41ddad7fb9e34528c5729d37c5e811ec678d3 |
container_end_page | 11560 |
container_issue | 25 |
container_start_page | 11545 |
container_title | Journal of materials science |
container_volume | 55 |
creator | Wu, Zibin Zhang, Haitao Qin, Kunlun Zou, Jing Qin, Ke Ban, Chunyan Cui, Jianzhong Nagaumi, Hiromi |
description | The electrochemical discharge behaviours of Al–0.5Mg–0.1Sn (wt%), Al–0.5Mg–0.1Sn–0.05In (wt%), Al–0.5Mg–0.1Sn–0.05Ga (wt%) and Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) alloys are investigated in 2 M NaCl solution. Based on electrochemical responses and microstructure observations, the influence mechanism of indium and gallium on the discharge behaviour of Al–Mg–Sn-based anode is clarified. The result indicates that Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anode has the best discharge characteristics. Adding gallium accelerates active dissolution of Al–Mg–Sn anode. And adding indium leads to the appearance of discharge products (ie, In and In(OH)
3
), which inhibits the self-corrosion reaction of the anode. The peak power and peak energy density of Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anodes reach approximately 92.96 mW cm
−2
(at 140 mA cm
−2
) and 3385.4 W h kg
−1
(at 20 mA cm
−2
) in 2 M NaCl solution, which increases by 447% and 104% compared with that of Al–0.5Mg–0.1Sn (wt%) anodes, respectively. Therefore, Al–Mg–Sn–Ga–In anodes could be a good and promising choice for high-speed discharge Al–air batteries in brine electrolytes. |
doi_str_mv | 10.1007/s10853-020-04755-8 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2411432236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A626344556</galeid><sourcerecordid>A626344556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-7fa43098cc66e350df2ba046bb9a41ddad7fb9e34528c5729d37c5e811ec678d3</originalsourceid><addsrcrecordid>eNp9kc1q3DAQx01poNs0L9CToKcenOrT9h6XpR-BpIUmOQtZGnsVtFIqyaF76zvkHOiz9FH6JJXrQsklCKRB-v1nNPOvqtcEnxKM23eJ4E6wGlNcY94KUXfPqhURLat5h9nzaoUxpTXlDXlRvUzpBmMsWkpW1cPVDlAMDlAY0Kics9MeKW-Q9WYOrUd2fxvDnfUjyoUFBzrHoHewt1o5pHcqKp0h2pStTnOajfv94_5iLNulr3uVwKCSOBzQEOLyqGxEvcpFdSjFgoE0F6K_fl6gz2rrUApuyjb4V9XRoFyCk3_ncXX94f3V9lN9_uXj2XZzXmvOSK7bQXGG153WTQNMYDPQXmHe9P1acWKMMu3Qr4FxQTtd-l4b1moBHSGgm7Yz7Lh6s-QtnX6bIGV5E6boS0lJOSGcUcqaQp0uVJkTSOuHkEvrZZl5FsHDYMv9pqEN41yIWfD2kaAwGb7nUU0pybPLr49ZurA6hpQiDPI22r2KB0mwnD2Wi8eyeCz_eiy7ImKLKBXYjxD___sJ1R-6_K2z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411432236</pqid></control><display><type>article</type><title>The role of gallium and indium in improving the electrochemical characteristics of Al–Mg–Sn-based alloy for Al–air battery anodes in 2 M NaCl solution</title><source>Springer Nature</source><creator>Wu, Zibin ; Zhang, Haitao ; Qin, Kunlun ; Zou, Jing ; Qin, Ke ; Ban, Chunyan ; Cui, Jianzhong ; Nagaumi, Hiromi</creator><creatorcontrib>Wu, Zibin ; Zhang, Haitao ; Qin, Kunlun ; Zou, Jing ; Qin, Ke ; Ban, Chunyan ; Cui, Jianzhong ; Nagaumi, Hiromi</creatorcontrib><description>The electrochemical discharge behaviours of Al–0.5Mg–0.1Sn (wt%), Al–0.5Mg–0.1Sn–0.05In (wt%), Al–0.5Mg–0.1Sn–0.05Ga (wt%) and Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) alloys are investigated in 2 M NaCl solution. Based on electrochemical responses and microstructure observations, the influence mechanism of indium and gallium on the discharge behaviour of Al–Mg–Sn-based anode is clarified. The result indicates that Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anode has the best discharge characteristics. Adding gallium accelerates active dissolution of Al–Mg–Sn anode. And adding indium leads to the appearance of discharge products (ie, In and In(OH)
3
), which inhibits the self-corrosion reaction of the anode. The peak power and peak energy density of Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anodes reach approximately 92.96 mW cm
−2
(at 140 mA cm
−2
) and 3385.4 W h kg
−1
(at 20 mA cm
−2
) in 2 M NaCl solution, which increases by 447% and 104% compared with that of Al–0.5Mg–0.1Sn (wt%) anodes, respectively. Therefore, Al–Mg–Sn–Ga–In anodes could be a good and promising choice for high-speed discharge Al–air batteries in brine electrolytes.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-04755-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Anodes ; Anodic dissolution ; Batteries ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Corrosion and anti-corrosives ; Crystallography and Scattering Methods ; Discharge ; Dissolution ; Electrolytes ; Energy Materials ; Flux density ; Gallium ; Indium ; Magnesium ; Materials Science ; Metal air batteries ; Polymer Sciences ; Saline water ; Sodium chloride ; Solid Mechanics ; Specialty metals industry ; Tin base alloys</subject><ispartof>Journal of materials science, 2020-09, Vol.55 (25), p.11545-11560</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-7fa43098cc66e350df2ba046bb9a41ddad7fb9e34528c5729d37c5e811ec678d3</citedby><cites>FETCH-LOGICAL-c431t-7fa43098cc66e350df2ba046bb9a41ddad7fb9e34528c5729d37c5e811ec678d3</cites><orcidid>0000-0002-6664-324X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Zibin</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Qin, Kunlun</creatorcontrib><creatorcontrib>Zou, Jing</creatorcontrib><creatorcontrib>Qin, Ke</creatorcontrib><creatorcontrib>Ban, Chunyan</creatorcontrib><creatorcontrib>Cui, Jianzhong</creatorcontrib><creatorcontrib>Nagaumi, Hiromi</creatorcontrib><title>The role of gallium and indium in improving the electrochemical characteristics of Al–Mg–Sn-based alloy for Al–air battery anodes in 2 M NaCl solution</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The electrochemical discharge behaviours of Al–0.5Mg–0.1Sn (wt%), Al–0.5Mg–0.1Sn–0.05In (wt%), Al–0.5Mg–0.1Sn–0.05Ga (wt%) and Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) alloys are investigated in 2 M NaCl solution. Based on electrochemical responses and microstructure observations, the influence mechanism of indium and gallium on the discharge behaviour of Al–Mg–Sn-based anode is clarified. The result indicates that Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anode has the best discharge characteristics. Adding gallium accelerates active dissolution of Al–Mg–Sn anode. And adding indium leads to the appearance of discharge products (ie, In and In(OH)
3
), which inhibits the self-corrosion reaction of the anode. The peak power and peak energy density of Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anodes reach approximately 92.96 mW cm
−2
(at 140 mA cm
−2
) and 3385.4 W h kg
−1
(at 20 mA cm
−2
) in 2 M NaCl solution, which increases by 447% and 104% compared with that of Al–0.5Mg–0.1Sn (wt%) anodes, respectively. Therefore, Al–Mg–Sn–Ga–In anodes could be a good and promising choice for high-speed discharge Al–air batteries in brine electrolytes.</description><subject>Alloys</subject><subject>Anodes</subject><subject>Anodic dissolution</subject><subject>Batteries</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Corrosion and anti-corrosives</subject><subject>Crystallography and Scattering Methods</subject><subject>Discharge</subject><subject>Dissolution</subject><subject>Electrolytes</subject><subject>Energy Materials</subject><subject>Flux density</subject><subject>Gallium</subject><subject>Indium</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Metal air batteries</subject><subject>Polymer Sciences</subject><subject>Saline water</subject><subject>Sodium chloride</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Tin base alloys</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1q3DAQx01poNs0L9CToKcenOrT9h6XpR-BpIUmOQtZGnsVtFIqyaF76zvkHOiz9FH6JJXrQsklCKRB-v1nNPOvqtcEnxKM23eJ4E6wGlNcY94KUXfPqhURLat5h9nzaoUxpTXlDXlRvUzpBmMsWkpW1cPVDlAMDlAY0Kics9MeKW-Q9WYOrUd2fxvDnfUjyoUFBzrHoHewt1o5pHcqKp0h2pStTnOajfv94_5iLNulr3uVwKCSOBzQEOLyqGxEvcpFdSjFgoE0F6K_fl6gz2rrUApuyjb4V9XRoFyCk3_ncXX94f3V9lN9_uXj2XZzXmvOSK7bQXGG153WTQNMYDPQXmHe9P1acWKMMu3Qr4FxQTtd-l4b1moBHSGgm7Yz7Lh6s-QtnX6bIGV5E6boS0lJOSGcUcqaQp0uVJkTSOuHkEvrZZl5FsHDYMv9pqEN41yIWfD2kaAwGb7nUU0pybPLr49ZurA6hpQiDPI22r2KB0mwnD2Wi8eyeCz_eiy7ImKLKBXYjxD___sJ1R-6_K2z</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wu, Zibin</creator><creator>Zhang, Haitao</creator><creator>Qin, Kunlun</creator><creator>Zou, Jing</creator><creator>Qin, Ke</creator><creator>Ban, Chunyan</creator><creator>Cui, Jianzhong</creator><creator>Nagaumi, Hiromi</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6664-324X</orcidid></search><sort><creationdate>20200901</creationdate><title>The role of gallium and indium in improving the electrochemical characteristics of Al–Mg–Sn-based alloy for Al–air battery anodes in 2 M NaCl solution</title><author>Wu, Zibin ; Zhang, Haitao ; Qin, Kunlun ; Zou, Jing ; Qin, Ke ; Ban, Chunyan ; Cui, Jianzhong ; Nagaumi, Hiromi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-7fa43098cc66e350df2ba046bb9a41ddad7fb9e34528c5729d37c5e811ec678d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloys</topic><topic>Anodes</topic><topic>Anodic dissolution</topic><topic>Batteries</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Corrosion and anti-corrosives</topic><topic>Crystallography and Scattering Methods</topic><topic>Discharge</topic><topic>Dissolution</topic><topic>Electrolytes</topic><topic>Energy Materials</topic><topic>Flux density</topic><topic>Gallium</topic><topic>Indium</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Metal air batteries</topic><topic>Polymer Sciences</topic><topic>Saline water</topic><topic>Sodium chloride</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Tin base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zibin</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Qin, Kunlun</creatorcontrib><creatorcontrib>Zou, Jing</creatorcontrib><creatorcontrib>Qin, Ke</creatorcontrib><creatorcontrib>Ban, Chunyan</creatorcontrib><creatorcontrib>Cui, Jianzhong</creatorcontrib><creatorcontrib>Nagaumi, Hiromi</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zibin</au><au>Zhang, Haitao</au><au>Qin, Kunlun</au><au>Zou, Jing</au><au>Qin, Ke</au><au>Ban, Chunyan</au><au>Cui, Jianzhong</au><au>Nagaumi, Hiromi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of gallium and indium in improving the electrochemical characteristics of Al–Mg–Sn-based alloy for Al–air battery anodes in 2 M NaCl solution</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>55</volume><issue>25</issue><spage>11545</spage><epage>11560</epage><pages>11545-11560</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The electrochemical discharge behaviours of Al–0.5Mg–0.1Sn (wt%), Al–0.5Mg–0.1Sn–0.05In (wt%), Al–0.5Mg–0.1Sn–0.05Ga (wt%) and Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) alloys are investigated in 2 M NaCl solution. Based on electrochemical responses and microstructure observations, the influence mechanism of indium and gallium on the discharge behaviour of Al–Mg–Sn-based anode is clarified. The result indicates that Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anode has the best discharge characteristics. Adding gallium accelerates active dissolution of Al–Mg–Sn anode. And adding indium leads to the appearance of discharge products (ie, In and In(OH)
3
), which inhibits the self-corrosion reaction of the anode. The peak power and peak energy density of Al–0.5Mg–0.1Sn–0.05Ga–0.05In (wt%) anodes reach approximately 92.96 mW cm
−2
(at 140 mA cm
−2
) and 3385.4 W h kg
−1
(at 20 mA cm
−2
) in 2 M NaCl solution, which increases by 447% and 104% compared with that of Al–0.5Mg–0.1Sn (wt%) anodes, respectively. Therefore, Al–Mg–Sn–Ga–In anodes could be a good and promising choice for high-speed discharge Al–air batteries in brine electrolytes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-04755-8</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6664-324X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2020-09, Vol.55 (25), p.11545-11560 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2411432236 |
source | Springer Nature |
subjects | Alloys Anodes Anodic dissolution Batteries Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Corrosion and anti-corrosives Crystallography and Scattering Methods Discharge Dissolution Electrolytes Energy Materials Flux density Gallium Indium Magnesium Materials Science Metal air batteries Polymer Sciences Saline water Sodium chloride Solid Mechanics Specialty metals industry Tin base alloys |
title | The role of gallium and indium in improving the electrochemical characteristics of Al–Mg–Sn-based alloy for Al–air battery anodes in 2 M NaCl solution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20gallium%20and%20indium%20in%20improving%20the%20electrochemical%20characteristics%20of%20Al%E2%80%93Mg%E2%80%93Sn-based%20alloy%20for%20Al%E2%80%93air%20battery%20anodes%20in%202%C2%A0M%20NaCl%20solution&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wu,%20Zibin&rft.date=2020-09-01&rft.volume=55&rft.issue=25&rft.spage=11545&rft.epage=11560&rft.pages=11545-11560&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-04755-8&rft_dat=%3Cgale_proqu%3EA626344556%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-7fa43098cc66e350df2ba046bb9a41ddad7fb9e34528c5729d37c5e811ec678d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2411432236&rft_id=info:pmid/&rft_galeid=A626344556&rfr_iscdi=true |