Loading…

Curcumin and Selenium Prevent Lipopolysaccharide/Diclofenac-Induced Liver Injury by Suppressing Inflammation and Oxidative Stress

Diclofenac (DCL), an anti-inflammatory drug used to reduce pain and inflammation, ranks in the top causes of drug-induced liver injury. The inflammatory stress induced by inflammagens is implicated in DCL-induced liver injury. Curcumin (CUR) and selenium (Se) possess anti-inflammatory effects; there...

Full description

Saved in:
Bibliographic Details
Published in:Biological trace element research 2020-07, Vol.196 (1), p.173-183
Main Authors: Al-dossari, Manal H., Fadda, Laila M., Attia, Hala A., Hasan, Iman H., Mahmoud, Ayman M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diclofenac (DCL), an anti-inflammatory drug used to reduce pain and inflammation, ranks in the top causes of drug-induced liver injury. The inflammatory stress induced by inflammagens is implicated in DCL-induced liver injury. Curcumin (CUR) and selenium (Se) possess anti-inflammatory effects; therefore, this study evaluated their protective potential against lipopolysaccharide (LPS)/DCL-induced liver injury. Rats received CUR and/or Se for 7 days followed by a single intravenous administration of LPS 2 h before a single injection of DCL and two other doses of CUR and/or Se 2 and 8 h after DCL. Administration of nontoxic doses of LPS and DCL resulted in liver damage evidenced by the significantly elevated liver function markers in serum. LPS/DCL-induced liver injury was confirmed by histological alterations, increased lipid peroxidation and nitric oxide, and diminished glutathione and superoxide dismutase. CUR and/or Se prevented liver injury, histological alterations, and oxidative stress and boosted antioxidant defenses in LPS/DCL-induced rats. In addition, CUR and/or Se reduced serum C-reactive protein, liver pro-inflammatory cytokines, and the expression of TLR4, NF-κB, JNK, and p38, and upregulated heme oxygenase-1 (HO-1). In conclusion, CUR and/or Se mitigated LPS/DCL-induced liver injury in rats by suppressing TLR4 signaling, inflammation, and oxidative stress and boosting HO-1 and other antioxidants. Therefore, CUR and Se can hinder the progression and severity of liver injury during acute inflammatory episodes.
ISSN:0163-4984
1559-0720
DOI:10.1007/s12011-019-01910-4