Loading…
Simulation of Erosion and Redeposition of Plasma Facing Materials Under Transient Plasma Instabilities
Deposition of plasma energy during off-normal fusion reactor operational events delivers a transient heat flux of up to 100 MJ/m 2 to the plasma-facing materials (PFMs). Understanding the exact material response to the extreme energy loading conditions plays a key role in establishing a realistic co...
Saved in:
Published in: | IEEE transactions on plasma science 2020-06, Vol.48 (6), p.1512-1518 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-c2a8a2a7ef5afde503f25ca09af599c074afe7c6db642509780c2519b735a0593 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-c2a8a2a7ef5afde503f25ca09af599c074afe7c6db642509780c2519b735a0593 |
container_end_page | 1518 |
container_issue | 6 |
container_start_page | 1512 |
container_title | IEEE transactions on plasma science |
container_volume | 48 |
creator | Almousa, Nouf M. Bourham, Mohamed |
description | Deposition of plasma energy during off-normal fusion reactor operational events delivers a transient heat flux of up to 100 MJ/m 2 to the plasma-facing materials (PFMs). Understanding the exact material response to the extreme energy loading conditions plays a key role in establishing a realistic computational tool that simulates the fusion plasma-material interaction. Surface damage can occur due to vaporization, melting, spallation, and liquid splatter. However, splashing mechanisms such as boiling and splattering, which result from various liquid instabilities, appear to be the main mechanism contributing to the melt layer erosion. The primary focus of this article is melting and resolidification and the effect of redeposition of the eroded material on surface erosion. A set of selected PFMs was exposed to a plasma heat flux of up to 40 GW/m 2 over a deposition duration of 200~\mu \text{s} . The source of the high energy plasma used in this article is the Surface InteRaction Experiment at North Carolina State (SIRENS) plasma source, which used to simulate disrupted plasma conditions. The underlying erosion mechanisms involved in the formation, ejection, and solidification of molten droplets are investigated using the basic plasma equations and a plasma fluid model implemented in the simulation code. The net erosion and redeposition thickness due to erosion of the vapor and melt layer have been evaluated post-plasma exposure and compared to the experimental measurements. |
doi_str_mv | 10.1109/TPS.2020.2963844 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2412229151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8963869</ieee_id><sourcerecordid>2412229151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c2a8a2a7ef5afde503f25ca09af599c074afe7c6db642509780c2519b735a0593</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfvgi8Fn1svSdM2jzI2HUwcbnsOtzaRjC6dSffgf2_KNl_uB_f53nFfQh4pZJSCfFkvVxkDBhmTBa_y_IqMqOQylbwU12QEIHnKK8pvyV0IOwCaC2AjYlZ2f2yxt51LOpNMfReGEl2TfOlGH2J7mS1bDHtMZlhb9518YK-9xTYkG9don6w9umC16y_c3IUet7aNeh3uyY2JrH445zHZzKbryXu6-HybT14Xac0k7WPEChmW2gg0jRbADRM1gkQjpKyhzNHosi6abZEzAbKsoGaCym3JBYKQfEyeT3sPvvs56tCrXXf0Lp5ULKeMxSuCRgpOVB3fDV4bdfB2j_5XUVCDmyq6qQY31dnNKHk6SazW-h-vhmkh-R_H23Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412229151</pqid></control><display><type>article</type><title>Simulation of Erosion and Redeposition of Plasma Facing Materials Under Transient Plasma Instabilities</title><source>IEEE Xplore (Online service)</source><creator>Almousa, Nouf M. ; Bourham, Mohamed</creator><creatorcontrib>Almousa, Nouf M. ; Bourham, Mohamed</creatorcontrib><description>Deposition of plasma energy during off-normal fusion reactor operational events delivers a transient heat flux of up to 100 MJ/m 2 to the plasma-facing materials (PFMs). Understanding the exact material response to the extreme energy loading conditions plays a key role in establishing a realistic computational tool that simulates the fusion plasma-material interaction. Surface damage can occur due to vaporization, melting, spallation, and liquid splatter. However, splashing mechanisms such as boiling and splattering, which result from various liquid instabilities, appear to be the main mechanism contributing to the melt layer erosion. The primary focus of this article is melting and resolidification and the effect of redeposition of the eroded material on surface erosion. A set of selected PFMs was exposed to a plasma heat flux of up to 40 GW/m 2 over a deposition duration of <inline-formula> <tex-math notation="LaTeX">200~\mu \text{s} </tex-math></inline-formula>. The source of the high energy plasma used in this article is the Surface InteRaction Experiment at North Carolina State (SIRENS) plasma source, which used to simulate disrupted plasma conditions. The underlying erosion mechanisms involved in the formation, ejection, and solidification of molten droplets are investigated using the basic plasma equations and a plasma fluid model implemented in the simulation code. The net erosion and redeposition thickness due to erosion of the vapor and melt layer have been evaluated post-plasma exposure and compared to the experimental measurements.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2020.2963844</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Deposition ; Erosion and redeposition ; Erosion mechanisms ; Heat flux ; Heat transfer ; Heating systems ; high energy plasma ; Magnetohydrodynamic stability ; Mathematical model ; melt layer splashing ; Melting ; Plasma ; Plasma sources ; Plasma temperature ; plasma-facing materials (PFMs) ; plasma–material interaction (PMI) ; Sirens ; Software ; Solidification ; Spallation ; Surface treatment ; Tungsten ; Vaporization</subject><ispartof>IEEE transactions on plasma science, 2020-06, Vol.48 (6), p.1512-1518</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c2a8a2a7ef5afde503f25ca09af599c074afe7c6db642509780c2519b735a0593</citedby><cites>FETCH-LOGICAL-c291t-c2a8a2a7ef5afde503f25ca09af599c074afe7c6db642509780c2519b735a0593</cites><orcidid>0000-0002-7206-2361 ; 0000-0001-6412-1993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8963869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Almousa, Nouf M.</creatorcontrib><creatorcontrib>Bourham, Mohamed</creatorcontrib><title>Simulation of Erosion and Redeposition of Plasma Facing Materials Under Transient Plasma Instabilities</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Deposition of plasma energy during off-normal fusion reactor operational events delivers a transient heat flux of up to 100 MJ/m 2 to the plasma-facing materials (PFMs). Understanding the exact material response to the extreme energy loading conditions plays a key role in establishing a realistic computational tool that simulates the fusion plasma-material interaction. Surface damage can occur due to vaporization, melting, spallation, and liquid splatter. However, splashing mechanisms such as boiling and splattering, which result from various liquid instabilities, appear to be the main mechanism contributing to the melt layer erosion. The primary focus of this article is melting and resolidification and the effect of redeposition of the eroded material on surface erosion. A set of selected PFMs was exposed to a plasma heat flux of up to 40 GW/m 2 over a deposition duration of <inline-formula> <tex-math notation="LaTeX">200~\mu \text{s} </tex-math></inline-formula>. The source of the high energy plasma used in this article is the Surface InteRaction Experiment at North Carolina State (SIRENS) plasma source, which used to simulate disrupted plasma conditions. The underlying erosion mechanisms involved in the formation, ejection, and solidification of molten droplets are investigated using the basic plasma equations and a plasma fluid model implemented in the simulation code. The net erosion and redeposition thickness due to erosion of the vapor and melt layer have been evaluated post-plasma exposure and compared to the experimental measurements.</description><subject>Computer simulation</subject><subject>Deposition</subject><subject>Erosion and redeposition</subject><subject>Erosion mechanisms</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heating systems</subject><subject>high energy plasma</subject><subject>Magnetohydrodynamic stability</subject><subject>Mathematical model</subject><subject>melt layer splashing</subject><subject>Melting</subject><subject>Plasma</subject><subject>Plasma sources</subject><subject>Plasma temperature</subject><subject>plasma-facing materials (PFMs)</subject><subject>plasma–material interaction (PMI)</subject><subject>Sirens</subject><subject>Software</subject><subject>Solidification</subject><subject>Spallation</subject><subject>Surface treatment</subject><subject>Tungsten</subject><subject>Vaporization</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQx4MoOKfvgi8Fn1svSdM2jzI2HUwcbnsOtzaRjC6dSffgf2_KNl_uB_f53nFfQh4pZJSCfFkvVxkDBhmTBa_y_IqMqOQylbwU12QEIHnKK8pvyV0IOwCaC2AjYlZ2f2yxt51LOpNMfReGEl2TfOlGH2J7mS1bDHtMZlhb9518YK-9xTYkG9don6w9umC16y_c3IUet7aNeh3uyY2JrH445zHZzKbryXu6-HybT14Xac0k7WPEChmW2gg0jRbADRM1gkQjpKyhzNHosi6abZEzAbKsoGaCym3JBYKQfEyeT3sPvvs56tCrXXf0Lp5ULKeMxSuCRgpOVB3fDV4bdfB2j_5XUVCDmyq6qQY31dnNKHk6SazW-h-vhmkh-R_H23Fw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Almousa, Nouf M.</creator><creator>Bourham, Mohamed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7206-2361</orcidid><orcidid>https://orcid.org/0000-0001-6412-1993</orcidid></search><sort><creationdate>20200601</creationdate><title>Simulation of Erosion and Redeposition of Plasma Facing Materials Under Transient Plasma Instabilities</title><author>Almousa, Nouf M. ; Bourham, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c2a8a2a7ef5afde503f25ca09af599c074afe7c6db642509780c2519b735a0593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Deposition</topic><topic>Erosion and redeposition</topic><topic>Erosion mechanisms</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heating systems</topic><topic>high energy plasma</topic><topic>Magnetohydrodynamic stability</topic><topic>Mathematical model</topic><topic>melt layer splashing</topic><topic>Melting</topic><topic>Plasma</topic><topic>Plasma sources</topic><topic>Plasma temperature</topic><topic>plasma-facing materials (PFMs)</topic><topic>plasma–material interaction (PMI)</topic><topic>Sirens</topic><topic>Software</topic><topic>Solidification</topic><topic>Spallation</topic><topic>Surface treatment</topic><topic>Tungsten</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almousa, Nouf M.</creatorcontrib><creatorcontrib>Bourham, Mohamed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almousa, Nouf M.</au><au>Bourham, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Erosion and Redeposition of Plasma Facing Materials Under Transient Plasma Instabilities</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>48</volume><issue>6</issue><spage>1512</spage><epage>1518</epage><pages>1512-1518</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Deposition of plasma energy during off-normal fusion reactor operational events delivers a transient heat flux of up to 100 MJ/m 2 to the plasma-facing materials (PFMs). Understanding the exact material response to the extreme energy loading conditions plays a key role in establishing a realistic computational tool that simulates the fusion plasma-material interaction. Surface damage can occur due to vaporization, melting, spallation, and liquid splatter. However, splashing mechanisms such as boiling and splattering, which result from various liquid instabilities, appear to be the main mechanism contributing to the melt layer erosion. The primary focus of this article is melting and resolidification and the effect of redeposition of the eroded material on surface erosion. A set of selected PFMs was exposed to a plasma heat flux of up to 40 GW/m 2 over a deposition duration of <inline-formula> <tex-math notation="LaTeX">200~\mu \text{s} </tex-math></inline-formula>. The source of the high energy plasma used in this article is the Surface InteRaction Experiment at North Carolina State (SIRENS) plasma source, which used to simulate disrupted plasma conditions. The underlying erosion mechanisms involved in the formation, ejection, and solidification of molten droplets are investigated using the basic plasma equations and a plasma fluid model implemented in the simulation code. The net erosion and redeposition thickness due to erosion of the vapor and melt layer have been evaluated post-plasma exposure and compared to the experimental measurements.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2020.2963844</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7206-2361</orcidid><orcidid>https://orcid.org/0000-0001-6412-1993</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2020-06, Vol.48 (6), p.1512-1518 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_journals_2412229151 |
source | IEEE Xplore (Online service) |
subjects | Computer simulation Deposition Erosion and redeposition Erosion mechanisms Heat flux Heat transfer Heating systems high energy plasma Magnetohydrodynamic stability Mathematical model melt layer splashing Melting Plasma Plasma sources Plasma temperature plasma-facing materials (PFMs) plasma–material interaction (PMI) Sirens Software Solidification Spallation Surface treatment Tungsten Vaporization |
title | Simulation of Erosion and Redeposition of Plasma Facing Materials Under Transient Plasma Instabilities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Erosion%20and%20Redeposition%20of%20Plasma%20Facing%20Materials%20Under%20Transient%20Plasma%20Instabilities&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Almousa,%20Nouf%20M.&rft.date=2020-06-01&rft.volume=48&rft.issue=6&rft.spage=1512&rft.epage=1518&rft.pages=1512-1518&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2020.2963844&rft_dat=%3Cproquest_ieee_%3E2412229151%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-c2a8a2a7ef5afde503f25ca09af599c074afe7c6db642509780c2519b735a0593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2412229151&rft_id=info:pmid/&rft_ieee_id=8963869&rfr_iscdi=true |