Loading…

Simulation of Erosion and Redeposition of Plasma Facing Materials Under Transient Plasma Instabilities

Deposition of plasma energy during off-normal fusion reactor operational events delivers a transient heat flux of up to 100 MJ/m 2 to the plasma-facing materials (PFMs). Understanding the exact material response to the extreme energy loading conditions plays a key role in establishing a realistic co...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2020-06, Vol.48 (6), p.1512-1518
Main Authors: Almousa, Nouf M., Bourham, Mohamed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-c2a8a2a7ef5afde503f25ca09af599c074afe7c6db642509780c2519b735a0593
cites cdi_FETCH-LOGICAL-c291t-c2a8a2a7ef5afde503f25ca09af599c074afe7c6db642509780c2519b735a0593
container_end_page 1518
container_issue 6
container_start_page 1512
container_title IEEE transactions on plasma science
container_volume 48
creator Almousa, Nouf M.
Bourham, Mohamed
description Deposition of plasma energy during off-normal fusion reactor operational events delivers a transient heat flux of up to 100 MJ/m 2 to the plasma-facing materials (PFMs). Understanding the exact material response to the extreme energy loading conditions plays a key role in establishing a realistic computational tool that simulates the fusion plasma-material interaction. Surface damage can occur due to vaporization, melting, spallation, and liquid splatter. However, splashing mechanisms such as boiling and splattering, which result from various liquid instabilities, appear to be the main mechanism contributing to the melt layer erosion. The primary focus of this article is melting and resolidification and the effect of redeposition of the eroded material on surface erosion. A set of selected PFMs was exposed to a plasma heat flux of up to 40 GW/m 2 over a deposition duration of 200~\mu \text{s} . The source of the high energy plasma used in this article is the Surface InteRaction Experiment at North Carolina State (SIRENS) plasma source, which used to simulate disrupted plasma conditions. The underlying erosion mechanisms involved in the formation, ejection, and solidification of molten droplets are investigated using the basic plasma equations and a plasma fluid model implemented in the simulation code. The net erosion and redeposition thickness due to erosion of the vapor and melt layer have been evaluated post-plasma exposure and compared to the experimental measurements.
doi_str_mv 10.1109/TPS.2020.2963844
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2412229151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8963869</ieee_id><sourcerecordid>2412229151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c2a8a2a7ef5afde503f25ca09af599c074afe7c6db642509780c2519b735a0593</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfvgi8Fn1svSdM2jzI2HUwcbnsOtzaRjC6dSffgf2_KNl_uB_f53nFfQh4pZJSCfFkvVxkDBhmTBa_y_IqMqOQylbwU12QEIHnKK8pvyV0IOwCaC2AjYlZ2f2yxt51LOpNMfReGEl2TfOlGH2J7mS1bDHtMZlhb9518YK-9xTYkG9don6w9umC16y_c3IUet7aNeh3uyY2JrH445zHZzKbryXu6-HybT14Xac0k7WPEChmW2gg0jRbADRM1gkQjpKyhzNHosi6abZEzAbKsoGaCym3JBYKQfEyeT3sPvvs56tCrXXf0Lp5ULKeMxSuCRgpOVB3fDV4bdfB2j_5XUVCDmyq6qQY31dnNKHk6SazW-h-vhmkh-R_H23Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412229151</pqid></control><display><type>article</type><title>Simulation of Erosion and Redeposition of Plasma Facing Materials Under Transient Plasma Instabilities</title><source>IEEE Xplore (Online service)</source><creator>Almousa, Nouf M. ; Bourham, Mohamed</creator><creatorcontrib>Almousa, Nouf M. ; Bourham, Mohamed</creatorcontrib><description>Deposition of plasma energy during off-normal fusion reactor operational events delivers a transient heat flux of up to 100 MJ/m 2 to the plasma-facing materials (PFMs). Understanding the exact material response to the extreme energy loading conditions plays a key role in establishing a realistic computational tool that simulates the fusion plasma-material interaction. Surface damage can occur due to vaporization, melting, spallation, and liquid splatter. However, splashing mechanisms such as boiling and splattering, which result from various liquid instabilities, appear to be the main mechanism contributing to the melt layer erosion. The primary focus of this article is melting and resolidification and the effect of redeposition of the eroded material on surface erosion. A set of selected PFMs was exposed to a plasma heat flux of up to 40 GW/m 2 over a deposition duration of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;200~\mu \text{s} &lt;/tex-math&gt;&lt;/inline-formula&gt;. The source of the high energy plasma used in this article is the Surface InteRaction Experiment at North Carolina State (SIRENS) plasma source, which used to simulate disrupted plasma conditions. The underlying erosion mechanisms involved in the formation, ejection, and solidification of molten droplets are investigated using the basic plasma equations and a plasma fluid model implemented in the simulation code. The net erosion and redeposition thickness due to erosion of the vapor and melt layer have been evaluated post-plasma exposure and compared to the experimental measurements.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2020.2963844</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Deposition ; Erosion and redeposition ; Erosion mechanisms ; Heat flux ; Heat transfer ; Heating systems ; high energy plasma ; Magnetohydrodynamic stability ; Mathematical model ; melt layer splashing ; Melting ; Plasma ; Plasma sources ; Plasma temperature ; plasma-facing materials (PFMs) ; plasma–material interaction (PMI) ; Sirens ; Software ; Solidification ; Spallation ; Surface treatment ; Tungsten ; Vaporization</subject><ispartof>IEEE transactions on plasma science, 2020-06, Vol.48 (6), p.1512-1518</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c2a8a2a7ef5afde503f25ca09af599c074afe7c6db642509780c2519b735a0593</citedby><cites>FETCH-LOGICAL-c291t-c2a8a2a7ef5afde503f25ca09af599c074afe7c6db642509780c2519b735a0593</cites><orcidid>0000-0002-7206-2361 ; 0000-0001-6412-1993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8963869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Almousa, Nouf M.</creatorcontrib><creatorcontrib>Bourham, Mohamed</creatorcontrib><title>Simulation of Erosion and Redeposition of Plasma Facing Materials Under Transient Plasma Instabilities</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Deposition of plasma energy during off-normal fusion reactor operational events delivers a transient heat flux of up to 100 MJ/m 2 to the plasma-facing materials (PFMs). Understanding the exact material response to the extreme energy loading conditions plays a key role in establishing a realistic computational tool that simulates the fusion plasma-material interaction. Surface damage can occur due to vaporization, melting, spallation, and liquid splatter. However, splashing mechanisms such as boiling and splattering, which result from various liquid instabilities, appear to be the main mechanism contributing to the melt layer erosion. The primary focus of this article is melting and resolidification and the effect of redeposition of the eroded material on surface erosion. A set of selected PFMs was exposed to a plasma heat flux of up to 40 GW/m 2 over a deposition duration of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;200~\mu \text{s} &lt;/tex-math&gt;&lt;/inline-formula&gt;. The source of the high energy plasma used in this article is the Surface InteRaction Experiment at North Carolina State (SIRENS) plasma source, which used to simulate disrupted plasma conditions. The underlying erosion mechanisms involved in the formation, ejection, and solidification of molten droplets are investigated using the basic plasma equations and a plasma fluid model implemented in the simulation code. The net erosion and redeposition thickness due to erosion of the vapor and melt layer have been evaluated post-plasma exposure and compared to the experimental measurements.</description><subject>Computer simulation</subject><subject>Deposition</subject><subject>Erosion and redeposition</subject><subject>Erosion mechanisms</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heating systems</subject><subject>high energy plasma</subject><subject>Magnetohydrodynamic stability</subject><subject>Mathematical model</subject><subject>melt layer splashing</subject><subject>Melting</subject><subject>Plasma</subject><subject>Plasma sources</subject><subject>Plasma temperature</subject><subject>plasma-facing materials (PFMs)</subject><subject>plasma–material interaction (PMI)</subject><subject>Sirens</subject><subject>Software</subject><subject>Solidification</subject><subject>Spallation</subject><subject>Surface treatment</subject><subject>Tungsten</subject><subject>Vaporization</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQx4MoOKfvgi8Fn1svSdM2jzI2HUwcbnsOtzaRjC6dSffgf2_KNl_uB_f53nFfQh4pZJSCfFkvVxkDBhmTBa_y_IqMqOQylbwU12QEIHnKK8pvyV0IOwCaC2AjYlZ2f2yxt51LOpNMfReGEl2TfOlGH2J7mS1bDHtMZlhb9518YK-9xTYkG9don6w9umC16y_c3IUet7aNeh3uyY2JrH445zHZzKbryXu6-HybT14Xac0k7WPEChmW2gg0jRbADRM1gkQjpKyhzNHosi6abZEzAbKsoGaCym3JBYKQfEyeT3sPvvs56tCrXXf0Lp5ULKeMxSuCRgpOVB3fDV4bdfB2j_5XUVCDmyq6qQY31dnNKHk6SazW-h-vhmkh-R_H23Fw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Almousa, Nouf M.</creator><creator>Bourham, Mohamed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7206-2361</orcidid><orcidid>https://orcid.org/0000-0001-6412-1993</orcidid></search><sort><creationdate>20200601</creationdate><title>Simulation of Erosion and Redeposition of Plasma Facing Materials Under Transient Plasma Instabilities</title><author>Almousa, Nouf M. ; Bourham, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c2a8a2a7ef5afde503f25ca09af599c074afe7c6db642509780c2519b735a0593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Deposition</topic><topic>Erosion and redeposition</topic><topic>Erosion mechanisms</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heating systems</topic><topic>high energy plasma</topic><topic>Magnetohydrodynamic stability</topic><topic>Mathematical model</topic><topic>melt layer splashing</topic><topic>Melting</topic><topic>Plasma</topic><topic>Plasma sources</topic><topic>Plasma temperature</topic><topic>plasma-facing materials (PFMs)</topic><topic>plasma–material interaction (PMI)</topic><topic>Sirens</topic><topic>Software</topic><topic>Solidification</topic><topic>Spallation</topic><topic>Surface treatment</topic><topic>Tungsten</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almousa, Nouf M.</creatorcontrib><creatorcontrib>Bourham, Mohamed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almousa, Nouf M.</au><au>Bourham, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Erosion and Redeposition of Plasma Facing Materials Under Transient Plasma Instabilities</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>48</volume><issue>6</issue><spage>1512</spage><epage>1518</epage><pages>1512-1518</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Deposition of plasma energy during off-normal fusion reactor operational events delivers a transient heat flux of up to 100 MJ/m 2 to the plasma-facing materials (PFMs). Understanding the exact material response to the extreme energy loading conditions plays a key role in establishing a realistic computational tool that simulates the fusion plasma-material interaction. Surface damage can occur due to vaporization, melting, spallation, and liquid splatter. However, splashing mechanisms such as boiling and splattering, which result from various liquid instabilities, appear to be the main mechanism contributing to the melt layer erosion. The primary focus of this article is melting and resolidification and the effect of redeposition of the eroded material on surface erosion. A set of selected PFMs was exposed to a plasma heat flux of up to 40 GW/m 2 over a deposition duration of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;200~\mu \text{s} &lt;/tex-math&gt;&lt;/inline-formula&gt;. The source of the high energy plasma used in this article is the Surface InteRaction Experiment at North Carolina State (SIRENS) plasma source, which used to simulate disrupted plasma conditions. The underlying erosion mechanisms involved in the formation, ejection, and solidification of molten droplets are investigated using the basic plasma equations and a plasma fluid model implemented in the simulation code. The net erosion and redeposition thickness due to erosion of the vapor and melt layer have been evaluated post-plasma exposure and compared to the experimental measurements.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2020.2963844</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7206-2361</orcidid><orcidid>https://orcid.org/0000-0001-6412-1993</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2020-06, Vol.48 (6), p.1512-1518
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_journals_2412229151
source IEEE Xplore (Online service)
subjects Computer simulation
Deposition
Erosion and redeposition
Erosion mechanisms
Heat flux
Heat transfer
Heating systems
high energy plasma
Magnetohydrodynamic stability
Mathematical model
melt layer splashing
Melting
Plasma
Plasma sources
Plasma temperature
plasma-facing materials (PFMs)
plasma–material interaction (PMI)
Sirens
Software
Solidification
Spallation
Surface treatment
Tungsten
Vaporization
title Simulation of Erosion and Redeposition of Plasma Facing Materials Under Transient Plasma Instabilities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Erosion%20and%20Redeposition%20of%20Plasma%20Facing%20Materials%20Under%20Transient%20Plasma%20Instabilities&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Almousa,%20Nouf%20M.&rft.date=2020-06-01&rft.volume=48&rft.issue=6&rft.spage=1512&rft.epage=1518&rft.pages=1512-1518&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2020.2963844&rft_dat=%3Cproquest_ieee_%3E2412229151%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-c2a8a2a7ef5afde503f25ca09af599c074afe7c6db642509780c2519b735a0593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2412229151&rft_id=info:pmid/&rft_ieee_id=8963869&rfr_iscdi=true