Loading…
Iron/Sulfur Co-Doped Titanium Dioxide Nanotubes: Optimization of the Photoelectrocatalytic Degradation of Phenol Red under Visible Light
Photoelectrocatalysis is a rapidly developing technology for degrading recalcitrant organic compounds in wastewater due to its ability to overcome electron-hole recombination. Herein, we synthesized Fe/S co-doped TiO2 nanotubes through an in-situ anodization technique. We developed a simple reduced...
Saved in:
Published in: | Key engineering materials 2020-06, Vol.847, p.95-101, Article 95 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photoelectrocatalysis is a rapidly developing technology for degrading recalcitrant organic compounds in wastewater due to its ability to overcome electron-hole recombination. Herein, we synthesized Fe/S co-doped TiO2 nanotubes through an in-situ anodization technique. We developed a simple reduced quadratic model based on response surface modeling which can be used to adequately correlate the operating parameters with the photoelectrocatalytic performance of Fe/S-TiNTs in degrading phenol red. Predicted maximum dye degradation of 54.78% was achieved by the generated model using the optimized parameters: initial phenol red concentration = 5.22 mg L-1, applied voltage = 27.4 V, and dopant loading = 2.97 wt.%. Upon validation, experimental maximum phenol degradation of 53.24% was obtained, which agrees well with the predicted value within statistical significance. Overall, our model can be potentially used for process optimization within the design space studied. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.847.95 |