Loading…

Simulated Annealing Method-Based Flight Schedule Optimization in Multiairport Systems

Integrated development and operational collaboration of regional airport groups have the potential to improve capacity and safety and also reduce environmental impacts and operational costs. However, research in multiairport systems (MASs), especially in China, is still in its infancy, with the cons...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-8
Main Authors: Geng, Xi, Hu, Minghua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Integrated development and operational collaboration of regional airport groups have the potential to improve capacity and safety and also reduce environmental impacts and operational costs. However, research in multiairport systems (MASs), especially in China, is still in its infancy, with the consequences of unbalanced development, inadequate coordination, unclear function partitioning, difficulty in air traffic management, and poor service quality of regional airports. Considering these characteristics influencing effective interaction and collaboration of regional airports, this paper formulates a model to optimize the flight schedules in the MAS with multiple objectives of minimizing the maximum displacement of all flights, the weighted sum of total flight adjustment of each airport, and flight delays. An improved simulated annealing algorithm (SAA) is designed to solve the proposed multiobjective optimization problem. The model is applied to a case of the Beijing-Tianjin-Hebei Airport Group. The computational results demonstrate that the model generates significant reductions in maximum displacement, average displacement, and average delay, compared to the First-Come-First-Served (FCFS) principle. The model proposed in this paper can be used by civil aviation authorities, air navigation service providers, and airlines to facilitate the integrated management of flight schedules in the MAS.
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/4731918