Loading…
Radiocarbon simulation fails to support the temporal synchroneity requirement of the Younger Dryas impact hypothesis
Fine-scale temporal processes, such as the synchronous deposition of organic materials, can be challenging to identify using 14C datasets. While some events, such as volcanic eruptions, leave clear evidence for synchronous deposition, synchroneity is more difficult to establish for other types of ev...
Saved in:
Published in: | Quaternary research 2020-07, Vol.96, p.123-139 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a322t-94a3b30871f7d1987fbff6830fd4c548ac586d8bcb9bce5902995e2af08b72d93 |
---|---|
cites | cdi_FETCH-LOGICAL-a322t-94a3b30871f7d1987fbff6830fd4c548ac586d8bcb9bce5902995e2af08b72d93 |
container_end_page | 139 |
container_issue | |
container_start_page | 123 |
container_title | Quaternary research |
container_volume | 96 |
creator | Jorgeson, Ian A. Breslawski, Ryan P. Fisher, Abigail E. |
description | Fine-scale temporal processes, such as the synchronous deposition of organic materials, can be challenging to identify using 14C datasets. While some events, such as volcanic eruptions, leave clear evidence for synchronous deposition, synchroneity is more difficult to establish for other types of events. This has been a source of controversy regarding 14C dates associated with a hypothesized extraterrestrial impact at the Younger Dryas Boundary (YDB). To address this controversy, we first aggregate 14C measurements from Northern Hemisphere YDB sites. We also aggregate 14C measurements associated with a known synchronous event, the Laacher See volcanic eruption. We then use a Monte Carlo simulation to evaluate the magnitude of variability expected in a 14C dataset associated with a synchronous event. The simulation accounts for measurement error, calibration uncertainty, “old wood” effects, and laboratory measurement biases. The Laacher See 14C dataset is consistent with expectations of synchroneity generated by the simulation. However, the YDB 14C dataset is inconsistent with the simulated expectations for synchroneity. These results suggest that a central requirement of the Younger Dryas Impact Hypothesis, synchronous global deposition of a YDB layer, is extremely unlikely, calling into question the Younger Dryas Impact Hypothesis more generally. |
doi_str_mv | 10.1017/qua.2019.83 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2412971249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_qua_2019_83</cupid><sourcerecordid>2412971249</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-94a3b30871f7d1987fbff6830fd4c548ac586d8bcb9bce5902995e2af08b72d93</originalsourceid><addsrcrecordid>eNptkE1LAzEURYMoWKsr_0DApUzNx0yTLKV-QkEQXbgKSSZpU2Ym0ySzmH_vVAtuXL37eIf74ABwjdECI8zu9oNaEITFgtMTMMNILAtEODsFM4QoLSouynNwkdIOTTvhaAbyu6p9MCrq0MHk26FR2U_RKd8kmANMQ9-HmGHeWphtO2XVwDR2ZhtDZ30eYbT7wUfb2i7D4H7ArzB0GxvhQxxVgr7tlclwO_ZhOiafLsGZU02yV8c5B59Pjx-rl2L99vy6ul8XihKSC1EqqiniDDtWY8GZ084tOUWuLk1VcmUqvqy5NlpoYyuBiBCVJcohrhmpBZ2Dm9_ePob9YFOWuzDEbnopSYmJYJiUB-r2lzIxpBStk330rYqjxEgetMpJqzxolZxOdHGkVaujrzf2r_Q__hs70H0b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412971249</pqid></control><display><type>article</type><title>Radiocarbon simulation fails to support the temporal synchroneity requirement of the Younger Dryas impact hypothesis</title><source>Cambridge University Press</source><creator>Jorgeson, Ian A. ; Breslawski, Ryan P. ; Fisher, Abigail E.</creator><creatorcontrib>Jorgeson, Ian A. ; Breslawski, Ryan P. ; Fisher, Abigail E.</creatorcontrib><description>Fine-scale temporal processes, such as the synchronous deposition of organic materials, can be challenging to identify using 14C datasets. While some events, such as volcanic eruptions, leave clear evidence for synchronous deposition, synchroneity is more difficult to establish for other types of events. This has been a source of controversy regarding 14C dates associated with a hypothesized extraterrestrial impact at the Younger Dryas Boundary (YDB). To address this controversy, we first aggregate 14C measurements from Northern Hemisphere YDB sites. We also aggregate 14C measurements associated with a known synchronous event, the Laacher See volcanic eruption. We then use a Monte Carlo simulation to evaluate the magnitude of variability expected in a 14C dataset associated with a synchronous event. The simulation accounts for measurement error, calibration uncertainty, “old wood” effects, and laboratory measurement biases. The Laacher See 14C dataset is consistent with expectations of synchroneity generated by the simulation. However, the YDB 14C dataset is inconsistent with the simulated expectations for synchroneity. These results suggest that a central requirement of the Younger Dryas Impact Hypothesis, synchronous global deposition of a YDB layer, is extremely unlikely, calling into question the Younger Dryas Impact Hypothesis more generally.</description><identifier>ISSN: 0033-5894</identifier><identifier>EISSN: 1096-0287</identifier><identifier>DOI: 10.1017/qua.2019.83</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Age ; Calendars ; Calibration ; Datasets ; Hypotheses ; Laboratories ; Monte Carlo simulation ; Research Article ; Volcanic eruptions</subject><ispartof>Quaternary research, 2020-07, Vol.96, p.123-139</ispartof><rights>Copyright © University of Washington. Published by Cambridge University Press, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-94a3b30871f7d1987fbff6830fd4c548ac586d8bcb9bce5902995e2af08b72d93</citedby><cites>FETCH-LOGICAL-a322t-94a3b30871f7d1987fbff6830fd4c548ac586d8bcb9bce5902995e2af08b72d93</cites><orcidid>0000-0002-8336-1295 ; 0000-0003-0817-5377 ; 0000-0002-1916-3585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0033589419000838/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,72706</link.rule.ids></links><search><creatorcontrib>Jorgeson, Ian A.</creatorcontrib><creatorcontrib>Breslawski, Ryan P.</creatorcontrib><creatorcontrib>Fisher, Abigail E.</creatorcontrib><title>Radiocarbon simulation fails to support the temporal synchroneity requirement of the Younger Dryas impact hypothesis</title><title>Quaternary research</title><addtitle>Quat. res</addtitle><description>Fine-scale temporal processes, such as the synchronous deposition of organic materials, can be challenging to identify using 14C datasets. While some events, such as volcanic eruptions, leave clear evidence for synchronous deposition, synchroneity is more difficult to establish for other types of events. This has been a source of controversy regarding 14C dates associated with a hypothesized extraterrestrial impact at the Younger Dryas Boundary (YDB). To address this controversy, we first aggregate 14C measurements from Northern Hemisphere YDB sites. We also aggregate 14C measurements associated with a known synchronous event, the Laacher See volcanic eruption. We then use a Monte Carlo simulation to evaluate the magnitude of variability expected in a 14C dataset associated with a synchronous event. The simulation accounts for measurement error, calibration uncertainty, “old wood” effects, and laboratory measurement biases. The Laacher See 14C dataset is consistent with expectations of synchroneity generated by the simulation. However, the YDB 14C dataset is inconsistent with the simulated expectations for synchroneity. These results suggest that a central requirement of the Younger Dryas Impact Hypothesis, synchronous global deposition of a YDB layer, is extremely unlikely, calling into question the Younger Dryas Impact Hypothesis more generally.</description><subject>Age</subject><subject>Calendars</subject><subject>Calibration</subject><subject>Datasets</subject><subject>Hypotheses</subject><subject>Laboratories</subject><subject>Monte Carlo simulation</subject><subject>Research Article</subject><subject>Volcanic eruptions</subject><issn>0033-5894</issn><issn>1096-0287</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEURYMoWKsr_0DApUzNx0yTLKV-QkEQXbgKSSZpU2Ym0ySzmH_vVAtuXL37eIf74ABwjdECI8zu9oNaEITFgtMTMMNILAtEODsFM4QoLSouynNwkdIOTTvhaAbyu6p9MCrq0MHk26FR2U_RKd8kmANMQ9-HmGHeWphtO2XVwDR2ZhtDZ30eYbT7wUfb2i7D4H7ArzB0GxvhQxxVgr7tlclwO_ZhOiafLsGZU02yV8c5B59Pjx-rl2L99vy6ul8XihKSC1EqqiniDDtWY8GZ084tOUWuLk1VcmUqvqy5NlpoYyuBiBCVJcohrhmpBZ2Dm9_ePob9YFOWuzDEbnopSYmJYJiUB-r2lzIxpBStk330rYqjxEgetMpJqzxolZxOdHGkVaujrzf2r_Q__hs70H0b</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Jorgeson, Ian A.</creator><creator>Breslawski, Ryan P.</creator><creator>Fisher, Abigail E.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8336-1295</orcidid><orcidid>https://orcid.org/0000-0003-0817-5377</orcidid><orcidid>https://orcid.org/0000-0002-1916-3585</orcidid></search><sort><creationdate>202007</creationdate><title>Radiocarbon simulation fails to support the temporal synchroneity requirement of the Younger Dryas impact hypothesis</title><author>Jorgeson, Ian A. ; Breslawski, Ryan P. ; Fisher, Abigail E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-94a3b30871f7d1987fbff6830fd4c548ac586d8bcb9bce5902995e2af08b72d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Calendars</topic><topic>Calibration</topic><topic>Datasets</topic><topic>Hypotheses</topic><topic>Laboratories</topic><topic>Monte Carlo simulation</topic><topic>Research Article</topic><topic>Volcanic eruptions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jorgeson, Ian A.</creatorcontrib><creatorcontrib>Breslawski, Ryan P.</creatorcontrib><creatorcontrib>Fisher, Abigail E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Quaternary research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jorgeson, Ian A.</au><au>Breslawski, Ryan P.</au><au>Fisher, Abigail E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiocarbon simulation fails to support the temporal synchroneity requirement of the Younger Dryas impact hypothesis</atitle><jtitle>Quaternary research</jtitle><addtitle>Quat. res</addtitle><date>2020-07</date><risdate>2020</risdate><volume>96</volume><spage>123</spage><epage>139</epage><pages>123-139</pages><issn>0033-5894</issn><eissn>1096-0287</eissn><abstract>Fine-scale temporal processes, such as the synchronous deposition of organic materials, can be challenging to identify using 14C datasets. While some events, such as volcanic eruptions, leave clear evidence for synchronous deposition, synchroneity is more difficult to establish for other types of events. This has been a source of controversy regarding 14C dates associated with a hypothesized extraterrestrial impact at the Younger Dryas Boundary (YDB). To address this controversy, we first aggregate 14C measurements from Northern Hemisphere YDB sites. We also aggregate 14C measurements associated with a known synchronous event, the Laacher See volcanic eruption. We then use a Monte Carlo simulation to evaluate the magnitude of variability expected in a 14C dataset associated with a synchronous event. The simulation accounts for measurement error, calibration uncertainty, “old wood” effects, and laboratory measurement biases. The Laacher See 14C dataset is consistent with expectations of synchroneity generated by the simulation. However, the YDB 14C dataset is inconsistent with the simulated expectations for synchroneity. These results suggest that a central requirement of the Younger Dryas Impact Hypothesis, synchronous global deposition of a YDB layer, is extremely unlikely, calling into question the Younger Dryas Impact Hypothesis more generally.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/qua.2019.83</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8336-1295</orcidid><orcidid>https://orcid.org/0000-0003-0817-5377</orcidid><orcidid>https://orcid.org/0000-0002-1916-3585</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-5894 |
ispartof | Quaternary research, 2020-07, Vol.96, p.123-139 |
issn | 0033-5894 1096-0287 |
language | eng |
recordid | cdi_proquest_journals_2412971249 |
source | Cambridge University Press |
subjects | Age Calendars Calibration Datasets Hypotheses Laboratories Monte Carlo simulation Research Article Volcanic eruptions |
title | Radiocarbon simulation fails to support the temporal synchroneity requirement of the Younger Dryas impact hypothesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiocarbon%20simulation%20fails%20to%20support%20the%20temporal%20synchroneity%20requirement%20of%20the%20Younger%20Dryas%20impact%20hypothesis&rft.jtitle=Quaternary%20research&rft.au=Jorgeson,%20Ian%20A.&rft.date=2020-07&rft.volume=96&rft.spage=123&rft.epage=139&rft.pages=123-139&rft.issn=0033-5894&rft.eissn=1096-0287&rft_id=info:doi/10.1017/qua.2019.83&rft_dat=%3Cproquest_cross%3E2412971249%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a322t-94a3b30871f7d1987fbff6830fd4c548ac586d8bcb9bce5902995e2af08b72d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2412971249&rft_id=info:pmid/&rft_cupid=10_1017_qua_2019_83&rfr_iscdi=true |