Loading…

Radiocarbon simulation fails to support the temporal synchroneity requirement of the Younger Dryas impact hypothesis

Fine-scale temporal processes, such as the synchronous deposition of organic materials, can be challenging to identify using 14C datasets. While some events, such as volcanic eruptions, leave clear evidence for synchronous deposition, synchroneity is more difficult to establish for other types of ev...

Full description

Saved in:
Bibliographic Details
Published in:Quaternary research 2020-07, Vol.96, p.123-139
Main Authors: Jorgeson, Ian A., Breslawski, Ryan P., Fisher, Abigail E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a322t-94a3b30871f7d1987fbff6830fd4c548ac586d8bcb9bce5902995e2af08b72d93
cites cdi_FETCH-LOGICAL-a322t-94a3b30871f7d1987fbff6830fd4c548ac586d8bcb9bce5902995e2af08b72d93
container_end_page 139
container_issue
container_start_page 123
container_title Quaternary research
container_volume 96
creator Jorgeson, Ian A.
Breslawski, Ryan P.
Fisher, Abigail E.
description Fine-scale temporal processes, such as the synchronous deposition of organic materials, can be challenging to identify using 14C datasets. While some events, such as volcanic eruptions, leave clear evidence for synchronous deposition, synchroneity is more difficult to establish for other types of events. This has been a source of controversy regarding 14C dates associated with a hypothesized extraterrestrial impact at the Younger Dryas Boundary (YDB). To address this controversy, we first aggregate 14C measurements from Northern Hemisphere YDB sites. We also aggregate 14C measurements associated with a known synchronous event, the Laacher See volcanic eruption. We then use a Monte Carlo simulation to evaluate the magnitude of variability expected in a 14C dataset associated with a synchronous event. The simulation accounts for measurement error, calibration uncertainty, “old wood” effects, and laboratory measurement biases. The Laacher See 14C dataset is consistent with expectations of synchroneity generated by the simulation. However, the YDB 14C dataset is inconsistent with the simulated expectations for synchroneity. These results suggest that a central requirement of the Younger Dryas Impact Hypothesis, synchronous global deposition of a YDB layer, is extremely unlikely, calling into question the Younger Dryas Impact Hypothesis more generally.
doi_str_mv 10.1017/qua.2019.83
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2412971249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_qua_2019_83</cupid><sourcerecordid>2412971249</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-94a3b30871f7d1987fbff6830fd4c548ac586d8bcb9bce5902995e2af08b72d93</originalsourceid><addsrcrecordid>eNptkE1LAzEURYMoWKsr_0DApUzNx0yTLKV-QkEQXbgKSSZpU2Ym0ySzmH_vVAtuXL37eIf74ABwjdECI8zu9oNaEITFgtMTMMNILAtEODsFM4QoLSouynNwkdIOTTvhaAbyu6p9MCrq0MHk26FR2U_RKd8kmANMQ9-HmGHeWphtO2XVwDR2ZhtDZ30eYbT7wUfb2i7D4H7ArzB0GxvhQxxVgr7tlclwO_ZhOiafLsGZU02yV8c5B59Pjx-rl2L99vy6ul8XihKSC1EqqiniDDtWY8GZ084tOUWuLk1VcmUqvqy5NlpoYyuBiBCVJcohrhmpBZ2Dm9_ePob9YFOWuzDEbnopSYmJYJiUB-r2lzIxpBStk330rYqjxEgetMpJqzxolZxOdHGkVaujrzf2r_Q__hs70H0b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412971249</pqid></control><display><type>article</type><title>Radiocarbon simulation fails to support the temporal synchroneity requirement of the Younger Dryas impact hypothesis</title><source>Cambridge University Press</source><creator>Jorgeson, Ian A. ; Breslawski, Ryan P. ; Fisher, Abigail E.</creator><creatorcontrib>Jorgeson, Ian A. ; Breslawski, Ryan P. ; Fisher, Abigail E.</creatorcontrib><description>Fine-scale temporal processes, such as the synchronous deposition of organic materials, can be challenging to identify using 14C datasets. While some events, such as volcanic eruptions, leave clear evidence for synchronous deposition, synchroneity is more difficult to establish for other types of events. This has been a source of controversy regarding 14C dates associated with a hypothesized extraterrestrial impact at the Younger Dryas Boundary (YDB). To address this controversy, we first aggregate 14C measurements from Northern Hemisphere YDB sites. We also aggregate 14C measurements associated with a known synchronous event, the Laacher See volcanic eruption. We then use a Monte Carlo simulation to evaluate the magnitude of variability expected in a 14C dataset associated with a synchronous event. The simulation accounts for measurement error, calibration uncertainty, “old wood” effects, and laboratory measurement biases. The Laacher See 14C dataset is consistent with expectations of synchroneity generated by the simulation. However, the YDB 14C dataset is inconsistent with the simulated expectations for synchroneity. These results suggest that a central requirement of the Younger Dryas Impact Hypothesis, synchronous global deposition of a YDB layer, is extremely unlikely, calling into question the Younger Dryas Impact Hypothesis more generally.</description><identifier>ISSN: 0033-5894</identifier><identifier>EISSN: 1096-0287</identifier><identifier>DOI: 10.1017/qua.2019.83</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Age ; Calendars ; Calibration ; Datasets ; Hypotheses ; Laboratories ; Monte Carlo simulation ; Research Article ; Volcanic eruptions</subject><ispartof>Quaternary research, 2020-07, Vol.96, p.123-139</ispartof><rights>Copyright © University of Washington. Published by Cambridge University Press, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-94a3b30871f7d1987fbff6830fd4c548ac586d8bcb9bce5902995e2af08b72d93</citedby><cites>FETCH-LOGICAL-a322t-94a3b30871f7d1987fbff6830fd4c548ac586d8bcb9bce5902995e2af08b72d93</cites><orcidid>0000-0002-8336-1295 ; 0000-0003-0817-5377 ; 0000-0002-1916-3585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0033589419000838/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,72706</link.rule.ids></links><search><creatorcontrib>Jorgeson, Ian A.</creatorcontrib><creatorcontrib>Breslawski, Ryan P.</creatorcontrib><creatorcontrib>Fisher, Abigail E.</creatorcontrib><title>Radiocarbon simulation fails to support the temporal synchroneity requirement of the Younger Dryas impact hypothesis</title><title>Quaternary research</title><addtitle>Quat. res</addtitle><description>Fine-scale temporal processes, such as the synchronous deposition of organic materials, can be challenging to identify using 14C datasets. While some events, such as volcanic eruptions, leave clear evidence for synchronous deposition, synchroneity is more difficult to establish for other types of events. This has been a source of controversy regarding 14C dates associated with a hypothesized extraterrestrial impact at the Younger Dryas Boundary (YDB). To address this controversy, we first aggregate 14C measurements from Northern Hemisphere YDB sites. We also aggregate 14C measurements associated with a known synchronous event, the Laacher See volcanic eruption. We then use a Monte Carlo simulation to evaluate the magnitude of variability expected in a 14C dataset associated with a synchronous event. The simulation accounts for measurement error, calibration uncertainty, “old wood” effects, and laboratory measurement biases. The Laacher See 14C dataset is consistent with expectations of synchroneity generated by the simulation. However, the YDB 14C dataset is inconsistent with the simulated expectations for synchroneity. These results suggest that a central requirement of the Younger Dryas Impact Hypothesis, synchronous global deposition of a YDB layer, is extremely unlikely, calling into question the Younger Dryas Impact Hypothesis more generally.</description><subject>Age</subject><subject>Calendars</subject><subject>Calibration</subject><subject>Datasets</subject><subject>Hypotheses</subject><subject>Laboratories</subject><subject>Monte Carlo simulation</subject><subject>Research Article</subject><subject>Volcanic eruptions</subject><issn>0033-5894</issn><issn>1096-0287</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEURYMoWKsr_0DApUzNx0yTLKV-QkEQXbgKSSZpU2Ym0ySzmH_vVAtuXL37eIf74ABwjdECI8zu9oNaEITFgtMTMMNILAtEODsFM4QoLSouynNwkdIOTTvhaAbyu6p9MCrq0MHk26FR2U_RKd8kmANMQ9-HmGHeWphtO2XVwDR2ZhtDZ30eYbT7wUfb2i7D4H7ArzB0GxvhQxxVgr7tlclwO_ZhOiafLsGZU02yV8c5B59Pjx-rl2L99vy6ul8XihKSC1EqqiniDDtWY8GZ084tOUWuLk1VcmUqvqy5NlpoYyuBiBCVJcohrhmpBZ2Dm9_ePob9YFOWuzDEbnopSYmJYJiUB-r2lzIxpBStk330rYqjxEgetMpJqzxolZxOdHGkVaujrzf2r_Q__hs70H0b</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Jorgeson, Ian A.</creator><creator>Breslawski, Ryan P.</creator><creator>Fisher, Abigail E.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8336-1295</orcidid><orcidid>https://orcid.org/0000-0003-0817-5377</orcidid><orcidid>https://orcid.org/0000-0002-1916-3585</orcidid></search><sort><creationdate>202007</creationdate><title>Radiocarbon simulation fails to support the temporal synchroneity requirement of the Younger Dryas impact hypothesis</title><author>Jorgeson, Ian A. ; Breslawski, Ryan P. ; Fisher, Abigail E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-94a3b30871f7d1987fbff6830fd4c548ac586d8bcb9bce5902995e2af08b72d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Calendars</topic><topic>Calibration</topic><topic>Datasets</topic><topic>Hypotheses</topic><topic>Laboratories</topic><topic>Monte Carlo simulation</topic><topic>Research Article</topic><topic>Volcanic eruptions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jorgeson, Ian A.</creatorcontrib><creatorcontrib>Breslawski, Ryan P.</creatorcontrib><creatorcontrib>Fisher, Abigail E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Quaternary research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jorgeson, Ian A.</au><au>Breslawski, Ryan P.</au><au>Fisher, Abigail E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiocarbon simulation fails to support the temporal synchroneity requirement of the Younger Dryas impact hypothesis</atitle><jtitle>Quaternary research</jtitle><addtitle>Quat. res</addtitle><date>2020-07</date><risdate>2020</risdate><volume>96</volume><spage>123</spage><epage>139</epage><pages>123-139</pages><issn>0033-5894</issn><eissn>1096-0287</eissn><abstract>Fine-scale temporal processes, such as the synchronous deposition of organic materials, can be challenging to identify using 14C datasets. While some events, such as volcanic eruptions, leave clear evidence for synchronous deposition, synchroneity is more difficult to establish for other types of events. This has been a source of controversy regarding 14C dates associated with a hypothesized extraterrestrial impact at the Younger Dryas Boundary (YDB). To address this controversy, we first aggregate 14C measurements from Northern Hemisphere YDB sites. We also aggregate 14C measurements associated with a known synchronous event, the Laacher See volcanic eruption. We then use a Monte Carlo simulation to evaluate the magnitude of variability expected in a 14C dataset associated with a synchronous event. The simulation accounts for measurement error, calibration uncertainty, “old wood” effects, and laboratory measurement biases. The Laacher See 14C dataset is consistent with expectations of synchroneity generated by the simulation. However, the YDB 14C dataset is inconsistent with the simulated expectations for synchroneity. These results suggest that a central requirement of the Younger Dryas Impact Hypothesis, synchronous global deposition of a YDB layer, is extremely unlikely, calling into question the Younger Dryas Impact Hypothesis more generally.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/qua.2019.83</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8336-1295</orcidid><orcidid>https://orcid.org/0000-0003-0817-5377</orcidid><orcidid>https://orcid.org/0000-0002-1916-3585</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0033-5894
ispartof Quaternary research, 2020-07, Vol.96, p.123-139
issn 0033-5894
1096-0287
language eng
recordid cdi_proquest_journals_2412971249
source Cambridge University Press
subjects Age
Calendars
Calibration
Datasets
Hypotheses
Laboratories
Monte Carlo simulation
Research Article
Volcanic eruptions
title Radiocarbon simulation fails to support the temporal synchroneity requirement of the Younger Dryas impact hypothesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiocarbon%20simulation%20fails%20to%20support%20the%20temporal%20synchroneity%20requirement%20of%20the%20Younger%20Dryas%20impact%20hypothesis&rft.jtitle=Quaternary%20research&rft.au=Jorgeson,%20Ian%20A.&rft.date=2020-07&rft.volume=96&rft.spage=123&rft.epage=139&rft.pages=123-139&rft.issn=0033-5894&rft.eissn=1096-0287&rft_id=info:doi/10.1017/qua.2019.83&rft_dat=%3Cproquest_cross%3E2412971249%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a322t-94a3b30871f7d1987fbff6830fd4c548ac586d8bcb9bce5902995e2af08b72d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2412971249&rft_id=info:pmid/&rft_cupid=10_1017_qua_2019_83&rfr_iscdi=true