Loading…
On Optimal Auctions for Mixing Exclusive and Shared Matching in Platforms
Platforms create value by matching participants on alternate sides of the marketplace. Although many platforms practice one-to-one matching (e.g., Uber), others can conduct and monetize one-to-many simultaneous matches (e.g., lead-marketing platforms). Both formats involve one dimension of private i...
Saved in:
Published in: | Management science 2020-06, Vol.66 (6), p.2653-2676 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Platforms create value by matching participants on alternate sides of the marketplace. Although many platforms practice one-to-one matching (e.g., Uber), others can conduct and monetize one-to-many simultaneous matches (e.g., lead-marketing platforms). Both formats involve one dimension of private information, a participant’s valuation for exclusive or shared allocation, respectively. This paper studies the problem of designing an auction format for platforms that mix the modes rather than limit to one and, therefore, involve both dimensions of information. We focus on
incentive-compatible
auctions (i.e., where truthful bidding is optimal) because of ease of participation and implementation. We formulate the problem to find the revenue-maximizing incentive-compatible auction as a mathematical program. Although hard to solve, the mathematical program leads to heuristic auction designs that are simple to implement, provide good revenue, and have speedy performance, all critical in practice. It also enables creation of upper bounds on the (unknown) optimal auction revenue, which are useful benchmarks for our proposed auction designs. By demonstrating a tight gap for our proposed two-dimensional reserve-price-based mechanism, we prove that it has excellent revenue performance and places low information and computational burden on the platform and participants.
This paper was accepted by Chris Forman, information systems. |
---|---|
ISSN: | 0025-1909 1526-5501 |
DOI: | 10.1287/mnsc.2019.3309 |