Loading…
Vibrational Excitation Hindering an Ion-Molecule Reaction: The c−C3H2+ − H2 Collision Complex
Experiments within a cryogenic 22-pole ion trap have revealed an interesting reaction dynamic phenomenon, where rovibrational excitation of an ionic molecule slows down a reaction with a neutral partner. This is demonstrated for the low-temperature hydrogen abstraction reaction c−C3H2+ + H2, where e...
Saved in:
Published in: | Physical review letters 2020-06, Vol.124 (23), p.1 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 23 |
container_start_page | 1 |
container_title | Physical review letters |
container_volume | 124 |
creator | Markus, Charles R Asvany, Oskar Salomon, Thomas Schmid, Philipp C Brünken, Sandra Lipparini, Filippo Gauss, Jürgen Schlemmer, Stephan |
description | Experiments within a cryogenic 22-pole ion trap have revealed an interesting reaction dynamic phenomenon, where rovibrational excitation of an ionic molecule slows down a reaction with a neutral partner. This is demonstrated for the low-temperature hydrogen abstraction reaction c−C3H2+ + H2, where excitation of the ion into the ν7 antisymmetric C-H stretching mode decreased the reaction rate coefficient toward the products c−C3H3+ + H. Supported by high-level quantum-chemical calculations, this observation is explained by the reaction proceeding through a c−C3H2+ − H2collision complex in the entrance channel, in which the hydrogen molecule is loosely bound to the hydrogen atom of the c−C3H2+ ion. This discovery enables high-resolution vibrational action spectroscopy for c−C3H2+ and other molecular ions with similar reaction pathways. Moreover, a detailed kinetic model relating the extent of the observed product depletion signal to the rate coefficients of inelastic collisions reveals that rotational relaxation of the vibrationally excited ions is significantly faster than the rovibrational relaxation, allowing for a large fraction of the ions to be vibrationally excited. This result provides fundamental insight into the mechanism for an important class of chemical reactions, and is capable of probing the inelastic collisional dynamics of molecular ions. |
doi_str_mv | 10.1103/PhysRevLett.124.233401 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2413188056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413188056</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-86963a54e4c04cc4afcbb210971a754f2e67ffe3aac09acf27a208dfea4951a93</originalsourceid><addsrcrecordid>eNotj9FKwzAYhYMoOKevIAEvpfP_k7RpvZMy7WCijOnt-JclriM2s-lkvoHXPqJP4qZenXPg44PD2DnCABHk1ePyI07s-9h23QCFGggpFeAB6yHoItGI6pD1ACQmBYA-ZicxrgAARZb3GD3X85a6OjTk-XBr6u538KpuFratmxdODR-FJrkP3pqNt3xiyeyRaz5dWm6-P79KWYlLviu8ErwM3tdxryjD69rb7Sk7cuSjPfvPPnu6HU7LKhk_3I3Km3GyRpRdkmdFJilVVhlQxihyZj4XCIVG0qlywmbaOSuJDBRknNAkIF84S6pIkQrZZxd_3nUb3jY2drNV2LS7W3EmFErMc0gz-QPckFsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413188056</pqid></control><display><type>article</type><title>Vibrational Excitation Hindering an Ion-Molecule Reaction: The c−C3H2+ − H2 Collision Complex</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Markus, Charles R ; Asvany, Oskar ; Salomon, Thomas ; Schmid, Philipp C ; Brünken, Sandra ; Lipparini, Filippo ; Gauss, Jürgen ; Schlemmer, Stephan</creator><creatorcontrib>Markus, Charles R ; Asvany, Oskar ; Salomon, Thomas ; Schmid, Philipp C ; Brünken, Sandra ; Lipparini, Filippo ; Gauss, Jürgen ; Schlemmer, Stephan</creatorcontrib><description>Experiments within a cryogenic 22-pole ion trap have revealed an interesting reaction dynamic phenomenon, where rovibrational excitation of an ionic molecule slows down a reaction with a neutral partner. This is demonstrated for the low-temperature hydrogen abstraction reaction c−C3H2+ + H2, where excitation of the ion into the ν7 antisymmetric C-H stretching mode decreased the reaction rate coefficient toward the products c−C3H3+ + H. Supported by high-level quantum-chemical calculations, this observation is explained by the reaction proceeding through a c−C3H2+ − H2collision complex in the entrance channel, in which the hydrogen molecule is loosely bound to the hydrogen atom of the c−C3H2+ ion. This discovery enables high-resolution vibrational action spectroscopy for c−C3H2+ and other molecular ions with similar reaction pathways. Moreover, a detailed kinetic model relating the extent of the observed product depletion signal to the rate coefficients of inelastic collisions reveals that rotational relaxation of the vibrationally excited ions is significantly faster than the rovibrational relaxation, allowing for a large fraction of the ions to be vibrationally excited. This result provides fundamental insight into the mechanism for an important class of chemical reactions, and is capable of probing the inelastic collisional dynamics of molecular ions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.124.233401</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Chemical reactions ; Collision complexes ; Depletion ; Excitation ; Hydrogen ; Inelastic collisions ; Low temperature ; Molecular ions ; Quantum chemistry</subject><ispartof>Physical review letters, 2020-06, Vol.124 (23), p.1</ispartof><rights>Copyright American Physical Society Jun 12, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Markus, Charles R</creatorcontrib><creatorcontrib>Asvany, Oskar</creatorcontrib><creatorcontrib>Salomon, Thomas</creatorcontrib><creatorcontrib>Schmid, Philipp C</creatorcontrib><creatorcontrib>Brünken, Sandra</creatorcontrib><creatorcontrib>Lipparini, Filippo</creatorcontrib><creatorcontrib>Gauss, Jürgen</creatorcontrib><creatorcontrib>Schlemmer, Stephan</creatorcontrib><title>Vibrational Excitation Hindering an Ion-Molecule Reaction: The c−C3H2+ − H2 Collision Complex</title><title>Physical review letters</title><description>Experiments within a cryogenic 22-pole ion trap have revealed an interesting reaction dynamic phenomenon, where rovibrational excitation of an ionic molecule slows down a reaction with a neutral partner. This is demonstrated for the low-temperature hydrogen abstraction reaction c−C3H2+ + H2, where excitation of the ion into the ν7 antisymmetric C-H stretching mode decreased the reaction rate coefficient toward the products c−C3H3+ + H. Supported by high-level quantum-chemical calculations, this observation is explained by the reaction proceeding through a c−C3H2+ − H2collision complex in the entrance channel, in which the hydrogen molecule is loosely bound to the hydrogen atom of the c−C3H2+ ion. This discovery enables high-resolution vibrational action spectroscopy for c−C3H2+ and other molecular ions with similar reaction pathways. Moreover, a detailed kinetic model relating the extent of the observed product depletion signal to the rate coefficients of inelastic collisions reveals that rotational relaxation of the vibrationally excited ions is significantly faster than the rovibrational relaxation, allowing for a large fraction of the ions to be vibrationally excited. This result provides fundamental insight into the mechanism for an important class of chemical reactions, and is capable of probing the inelastic collisional dynamics of molecular ions.</description><subject>Chemical reactions</subject><subject>Collision complexes</subject><subject>Depletion</subject><subject>Excitation</subject><subject>Hydrogen</subject><subject>Inelastic collisions</subject><subject>Low temperature</subject><subject>Molecular ions</subject><subject>Quantum chemistry</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotj9FKwzAYhYMoOKevIAEvpfP_k7RpvZMy7WCijOnt-JclriM2s-lkvoHXPqJP4qZenXPg44PD2DnCABHk1ePyI07s-9h23QCFGggpFeAB6yHoItGI6pD1ACQmBYA-ZicxrgAARZb3GD3X85a6OjTk-XBr6u538KpuFratmxdODR-FJrkP3pqNt3xiyeyRaz5dWm6-P79KWYlLviu8ErwM3tdxryjD69rb7Sk7cuSjPfvPPnu6HU7LKhk_3I3Km3GyRpRdkmdFJilVVhlQxihyZj4XCIVG0qlywmbaOSuJDBRknNAkIF84S6pIkQrZZxd_3nUb3jY2drNV2LS7W3EmFErMc0gz-QPckFsA</recordid><startdate>20200612</startdate><enddate>20200612</enddate><creator>Markus, Charles R</creator><creator>Asvany, Oskar</creator><creator>Salomon, Thomas</creator><creator>Schmid, Philipp C</creator><creator>Brünken, Sandra</creator><creator>Lipparini, Filippo</creator><creator>Gauss, Jürgen</creator><creator>Schlemmer, Stephan</creator><general>American Physical Society</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200612</creationdate><title>Vibrational Excitation Hindering an Ion-Molecule Reaction: The c−C3H2+ − H2 Collision Complex</title><author>Markus, Charles R ; Asvany, Oskar ; Salomon, Thomas ; Schmid, Philipp C ; Brünken, Sandra ; Lipparini, Filippo ; Gauss, Jürgen ; Schlemmer, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-86963a54e4c04cc4afcbb210971a754f2e67ffe3aac09acf27a208dfea4951a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical reactions</topic><topic>Collision complexes</topic><topic>Depletion</topic><topic>Excitation</topic><topic>Hydrogen</topic><topic>Inelastic collisions</topic><topic>Low temperature</topic><topic>Molecular ions</topic><topic>Quantum chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markus, Charles R</creatorcontrib><creatorcontrib>Asvany, Oskar</creatorcontrib><creatorcontrib>Salomon, Thomas</creatorcontrib><creatorcontrib>Schmid, Philipp C</creatorcontrib><creatorcontrib>Brünken, Sandra</creatorcontrib><creatorcontrib>Lipparini, Filippo</creatorcontrib><creatorcontrib>Gauss, Jürgen</creatorcontrib><creatorcontrib>Schlemmer, Stephan</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markus, Charles R</au><au>Asvany, Oskar</au><au>Salomon, Thomas</au><au>Schmid, Philipp C</au><au>Brünken, Sandra</au><au>Lipparini, Filippo</au><au>Gauss, Jürgen</au><au>Schlemmer, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibrational Excitation Hindering an Ion-Molecule Reaction: The c−C3H2+ − H2 Collision Complex</atitle><jtitle>Physical review letters</jtitle><date>2020-06-12</date><risdate>2020</risdate><volume>124</volume><issue>23</issue><spage>1</spage><pages>1-</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Experiments within a cryogenic 22-pole ion trap have revealed an interesting reaction dynamic phenomenon, where rovibrational excitation of an ionic molecule slows down a reaction with a neutral partner. This is demonstrated for the low-temperature hydrogen abstraction reaction c−C3H2+ + H2, where excitation of the ion into the ν7 antisymmetric C-H stretching mode decreased the reaction rate coefficient toward the products c−C3H3+ + H. Supported by high-level quantum-chemical calculations, this observation is explained by the reaction proceeding through a c−C3H2+ − H2collision complex in the entrance channel, in which the hydrogen molecule is loosely bound to the hydrogen atom of the c−C3H2+ ion. This discovery enables high-resolution vibrational action spectroscopy for c−C3H2+ and other molecular ions with similar reaction pathways. Moreover, a detailed kinetic model relating the extent of the observed product depletion signal to the rate coefficients of inelastic collisions reveals that rotational relaxation of the vibrationally excited ions is significantly faster than the rovibrational relaxation, allowing for a large fraction of the ions to be vibrationally excited. This result provides fundamental insight into the mechanism for an important class of chemical reactions, and is capable of probing the inelastic collisional dynamics of molecular ions.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.124.233401</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-06, Vol.124 (23), p.1 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_journals_2413188056 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Chemical reactions Collision complexes Depletion Excitation Hydrogen Inelastic collisions Low temperature Molecular ions Quantum chemistry |
title | Vibrational Excitation Hindering an Ion-Molecule Reaction: The c−C3H2+ − H2 Collision Complex |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibrational%20Excitation%20Hindering%20an%20Ion-Molecule%20Reaction:%20The%20c%E2%88%92C3H2+%20%E2%88%92%20H2%20Collision%20Complex&rft.jtitle=Physical%20review%20letters&rft.au=Markus,%20Charles%20R&rft.date=2020-06-12&rft.volume=124&rft.issue=23&rft.spage=1&rft.pages=1-&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.124.233401&rft_dat=%3Cproquest%3E2413188056%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p113t-86963a54e4c04cc4afcbb210971a754f2e67ffe3aac09acf27a208dfea4951a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2413188056&rft_id=info:pmid/&rfr_iscdi=true |