Loading…

Vibrational Excitation Hindering an Ion-Molecule Reaction: The c−C3H2+ − H2 Collision Complex

Experiments within a cryogenic 22-pole ion trap have revealed an interesting reaction dynamic phenomenon, where rovibrational excitation of an ionic molecule slows down a reaction with a neutral partner. This is demonstrated for the low-temperature hydrogen abstraction reaction c−C3H2+ + H2, where e...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2020-06, Vol.124 (23), p.1
Main Authors: Markus, Charles R, Asvany, Oskar, Salomon, Thomas, Schmid, Philipp C, Brünken, Sandra, Lipparini, Filippo, Gauss, Jürgen, Schlemmer, Stephan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 23
container_start_page 1
container_title Physical review letters
container_volume 124
creator Markus, Charles R
Asvany, Oskar
Salomon, Thomas
Schmid, Philipp C
Brünken, Sandra
Lipparini, Filippo
Gauss, Jürgen
Schlemmer, Stephan
description Experiments within a cryogenic 22-pole ion trap have revealed an interesting reaction dynamic phenomenon, where rovibrational excitation of an ionic molecule slows down a reaction with a neutral partner. This is demonstrated for the low-temperature hydrogen abstraction reaction c−C3H2+ + H2, where excitation of the ion into the ν7 antisymmetric C-H stretching mode decreased the reaction rate coefficient toward the products c−C3H3+ + H. Supported by high-level quantum-chemical calculations, this observation is explained by the reaction proceeding through a c−C3H2+ − H2collision complex in the entrance channel, in which the hydrogen molecule is loosely bound to the hydrogen atom of the c−C3H2+ ion. This discovery enables high-resolution vibrational action spectroscopy for c−C3H2+ and other molecular ions with similar reaction pathways. Moreover, a detailed kinetic model relating the extent of the observed product depletion signal to the rate coefficients of inelastic collisions reveals that rotational relaxation of the vibrationally excited ions is significantly faster than the rovibrational relaxation, allowing for a large fraction of the ions to be vibrationally excited. This result provides fundamental insight into the mechanism for an important class of chemical reactions, and is capable of probing the inelastic collisional dynamics of molecular ions.
doi_str_mv 10.1103/PhysRevLett.124.233401
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2413188056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413188056</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-86963a54e4c04cc4afcbb210971a754f2e67ffe3aac09acf27a208dfea4951a93</originalsourceid><addsrcrecordid>eNotj9FKwzAYhYMoOKevIAEvpfP_k7RpvZMy7WCijOnt-JclriM2s-lkvoHXPqJP4qZenXPg44PD2DnCABHk1ePyI07s-9h23QCFGggpFeAB6yHoItGI6pD1ACQmBYA-ZicxrgAARZb3GD3X85a6OjTk-XBr6u538KpuFratmxdODR-FJrkP3pqNt3xiyeyRaz5dWm6-P79KWYlLviu8ErwM3tdxryjD69rb7Sk7cuSjPfvPPnu6HU7LKhk_3I3Km3GyRpRdkmdFJilVVhlQxihyZj4XCIVG0qlywmbaOSuJDBRknNAkIF84S6pIkQrZZxd_3nUb3jY2drNV2LS7W3EmFErMc0gz-QPckFsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413188056</pqid></control><display><type>article</type><title>Vibrational Excitation Hindering an Ion-Molecule Reaction: The c−C3H2+ − H2 Collision Complex</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Markus, Charles R ; Asvany, Oskar ; Salomon, Thomas ; Schmid, Philipp C ; Brünken, Sandra ; Lipparini, Filippo ; Gauss, Jürgen ; Schlemmer, Stephan</creator><creatorcontrib>Markus, Charles R ; Asvany, Oskar ; Salomon, Thomas ; Schmid, Philipp C ; Brünken, Sandra ; Lipparini, Filippo ; Gauss, Jürgen ; Schlemmer, Stephan</creatorcontrib><description>Experiments within a cryogenic 22-pole ion trap have revealed an interesting reaction dynamic phenomenon, where rovibrational excitation of an ionic molecule slows down a reaction with a neutral partner. This is demonstrated for the low-temperature hydrogen abstraction reaction c−C3H2+ + H2, where excitation of the ion into the ν7 antisymmetric C-H stretching mode decreased the reaction rate coefficient toward the products c−C3H3+ + H. Supported by high-level quantum-chemical calculations, this observation is explained by the reaction proceeding through a c−C3H2+ − H2collision complex in the entrance channel, in which the hydrogen molecule is loosely bound to the hydrogen atom of the c−C3H2+ ion. This discovery enables high-resolution vibrational action spectroscopy for c−C3H2+ and other molecular ions with similar reaction pathways. Moreover, a detailed kinetic model relating the extent of the observed product depletion signal to the rate coefficients of inelastic collisions reveals that rotational relaxation of the vibrationally excited ions is significantly faster than the rovibrational relaxation, allowing for a large fraction of the ions to be vibrationally excited. This result provides fundamental insight into the mechanism for an important class of chemical reactions, and is capable of probing the inelastic collisional dynamics of molecular ions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.124.233401</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Chemical reactions ; Collision complexes ; Depletion ; Excitation ; Hydrogen ; Inelastic collisions ; Low temperature ; Molecular ions ; Quantum chemistry</subject><ispartof>Physical review letters, 2020-06, Vol.124 (23), p.1</ispartof><rights>Copyright American Physical Society Jun 12, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Markus, Charles R</creatorcontrib><creatorcontrib>Asvany, Oskar</creatorcontrib><creatorcontrib>Salomon, Thomas</creatorcontrib><creatorcontrib>Schmid, Philipp C</creatorcontrib><creatorcontrib>Brünken, Sandra</creatorcontrib><creatorcontrib>Lipparini, Filippo</creatorcontrib><creatorcontrib>Gauss, Jürgen</creatorcontrib><creatorcontrib>Schlemmer, Stephan</creatorcontrib><title>Vibrational Excitation Hindering an Ion-Molecule Reaction: The c−C3H2+ − H2 Collision Complex</title><title>Physical review letters</title><description>Experiments within a cryogenic 22-pole ion trap have revealed an interesting reaction dynamic phenomenon, where rovibrational excitation of an ionic molecule slows down a reaction with a neutral partner. This is demonstrated for the low-temperature hydrogen abstraction reaction c−C3H2+ + H2, where excitation of the ion into the ν7 antisymmetric C-H stretching mode decreased the reaction rate coefficient toward the products c−C3H3+ + H. Supported by high-level quantum-chemical calculations, this observation is explained by the reaction proceeding through a c−C3H2+ − H2collision complex in the entrance channel, in which the hydrogen molecule is loosely bound to the hydrogen atom of the c−C3H2+ ion. This discovery enables high-resolution vibrational action spectroscopy for c−C3H2+ and other molecular ions with similar reaction pathways. Moreover, a detailed kinetic model relating the extent of the observed product depletion signal to the rate coefficients of inelastic collisions reveals that rotational relaxation of the vibrationally excited ions is significantly faster than the rovibrational relaxation, allowing for a large fraction of the ions to be vibrationally excited. This result provides fundamental insight into the mechanism for an important class of chemical reactions, and is capable of probing the inelastic collisional dynamics of molecular ions.</description><subject>Chemical reactions</subject><subject>Collision complexes</subject><subject>Depletion</subject><subject>Excitation</subject><subject>Hydrogen</subject><subject>Inelastic collisions</subject><subject>Low temperature</subject><subject>Molecular ions</subject><subject>Quantum chemistry</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotj9FKwzAYhYMoOKevIAEvpfP_k7RpvZMy7WCijOnt-JclriM2s-lkvoHXPqJP4qZenXPg44PD2DnCABHk1ePyI07s-9h23QCFGggpFeAB6yHoItGI6pD1ACQmBYA-ZicxrgAARZb3GD3X85a6OjTk-XBr6u538KpuFratmxdODR-FJrkP3pqNt3xiyeyRaz5dWm6-P79KWYlLviu8ErwM3tdxryjD69rb7Sk7cuSjPfvPPnu6HU7LKhk_3I3Km3GyRpRdkmdFJilVVhlQxihyZj4XCIVG0qlywmbaOSuJDBRknNAkIF84S6pIkQrZZxd_3nUb3jY2drNV2LS7W3EmFErMc0gz-QPckFsA</recordid><startdate>20200612</startdate><enddate>20200612</enddate><creator>Markus, Charles R</creator><creator>Asvany, Oskar</creator><creator>Salomon, Thomas</creator><creator>Schmid, Philipp C</creator><creator>Brünken, Sandra</creator><creator>Lipparini, Filippo</creator><creator>Gauss, Jürgen</creator><creator>Schlemmer, Stephan</creator><general>American Physical Society</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200612</creationdate><title>Vibrational Excitation Hindering an Ion-Molecule Reaction: The c−C3H2+ − H2 Collision Complex</title><author>Markus, Charles R ; Asvany, Oskar ; Salomon, Thomas ; Schmid, Philipp C ; Brünken, Sandra ; Lipparini, Filippo ; Gauss, Jürgen ; Schlemmer, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-86963a54e4c04cc4afcbb210971a754f2e67ffe3aac09acf27a208dfea4951a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical reactions</topic><topic>Collision complexes</topic><topic>Depletion</topic><topic>Excitation</topic><topic>Hydrogen</topic><topic>Inelastic collisions</topic><topic>Low temperature</topic><topic>Molecular ions</topic><topic>Quantum chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markus, Charles R</creatorcontrib><creatorcontrib>Asvany, Oskar</creatorcontrib><creatorcontrib>Salomon, Thomas</creatorcontrib><creatorcontrib>Schmid, Philipp C</creatorcontrib><creatorcontrib>Brünken, Sandra</creatorcontrib><creatorcontrib>Lipparini, Filippo</creatorcontrib><creatorcontrib>Gauss, Jürgen</creatorcontrib><creatorcontrib>Schlemmer, Stephan</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markus, Charles R</au><au>Asvany, Oskar</au><au>Salomon, Thomas</au><au>Schmid, Philipp C</au><au>Brünken, Sandra</au><au>Lipparini, Filippo</au><au>Gauss, Jürgen</au><au>Schlemmer, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibrational Excitation Hindering an Ion-Molecule Reaction: The c−C3H2+ − H2 Collision Complex</atitle><jtitle>Physical review letters</jtitle><date>2020-06-12</date><risdate>2020</risdate><volume>124</volume><issue>23</issue><spage>1</spage><pages>1-</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Experiments within a cryogenic 22-pole ion trap have revealed an interesting reaction dynamic phenomenon, where rovibrational excitation of an ionic molecule slows down a reaction with a neutral partner. This is demonstrated for the low-temperature hydrogen abstraction reaction c−C3H2+ + H2, where excitation of the ion into the ν7 antisymmetric C-H stretching mode decreased the reaction rate coefficient toward the products c−C3H3+ + H. Supported by high-level quantum-chemical calculations, this observation is explained by the reaction proceeding through a c−C3H2+ − H2collision complex in the entrance channel, in which the hydrogen molecule is loosely bound to the hydrogen atom of the c−C3H2+ ion. This discovery enables high-resolution vibrational action spectroscopy for c−C3H2+ and other molecular ions with similar reaction pathways. Moreover, a detailed kinetic model relating the extent of the observed product depletion signal to the rate coefficients of inelastic collisions reveals that rotational relaxation of the vibrationally excited ions is significantly faster than the rovibrational relaxation, allowing for a large fraction of the ions to be vibrationally excited. This result provides fundamental insight into the mechanism for an important class of chemical reactions, and is capable of probing the inelastic collisional dynamics of molecular ions.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.124.233401</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2020-06, Vol.124 (23), p.1
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_journals_2413188056
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Chemical reactions
Collision complexes
Depletion
Excitation
Hydrogen
Inelastic collisions
Low temperature
Molecular ions
Quantum chemistry
title Vibrational Excitation Hindering an Ion-Molecule Reaction: The c−C3H2+ − H2 Collision Complex
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibrational%20Excitation%20Hindering%20an%20Ion-Molecule%20Reaction:%20The%20c%E2%88%92C3H2+%20%E2%88%92%20H2%20Collision%20Complex&rft.jtitle=Physical%20review%20letters&rft.au=Markus,%20Charles%20R&rft.date=2020-06-12&rft.volume=124&rft.issue=23&rft.spage=1&rft.pages=1-&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.124.233401&rft_dat=%3Cproquest%3E2413188056%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p113t-86963a54e4c04cc4afcbb210971a754f2e67ffe3aac09acf27a208dfea4951a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2413188056&rft_id=info:pmid/&rfr_iscdi=true